Rizhong Lin, Hamza Kebiri, Ali Gholipour, Yufei Chen, Jean-Philippe Thiran, Davood Karimi, Meritxell Bach Cuadra
{"title":"深度学习用于婴儿大脑的fODF估计:模型比较,真实影响和域移位缓解。","authors":"Rizhong Lin, Hamza Kebiri, Ali Gholipour, Yufei Chen, Jean-Philippe Thiran, Davood Karimi, Meritxell Bach Cuadra","doi":"10.1002/hbm.70367","DOIUrl":null,"url":null,"abstract":"<p>The accurate estimation of fiber orientation distribution functions (fODFs) in diffusion magnetic resonance imaging (MRI) is crucial for understanding early brain development and its potential disruptions. Although supervised deep learning (DL) models have shown promise in fODF estimation from neonatal diffusion MRI (dMRI) data, the out-of-domain (OOD) performance of these models remains largely unexplored, especially under diverse domain shift scenarios. This study evaluated the robustness of three state-of-the-art DL architectures: multilayer perceptron (MLP), transformer, and U-Net/convolutional neural network (CNN) on fODF predictions derived from dMRI data. Using 488 subjects from the developing Human Connectome Project (dHCP) and the Baby Connectome Project (BCP) datasets, we reconstructed reference fODFs from the full dMRI series using single-shell three-tissue constrained spherical deconvolution (SS3T-CSD) and multi-shell multi-tissue CSD (MSMT-CSD) to generate reference fODF reconstructions for model training, and systematically assessed the impact of age, scanner/protocol differences, and input dimensionality on model performance. Our findings reveal that U-Net consistently outperformed other models when fewer diffusion gradient directions were used, particularly with the SS3T-CSD-derived ground truth, which showed superior performance in capturing crossing fibers. However, as the number of input diffusion gradient directions increased, MLP and the transformer-based model exhibited steady gains in accuracy. Nevertheless, performance nearly plateaued from 28 to 45 input directions in all models. Age-related domain shifts showed asymmetric patterns, being less pronounced in late developmental stages (late neonates, and babies), with SS3T-CSD demonstrating greater robustness to variability compared to MSMT-CSD. To address inter-site domain shifts, we implemented two adaptation strategies: the Method of Moments (MoM) and fine-tuning. Both strategies achieved significant improvements (<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo><</mo>\n <mn>0.05</mn>\n </mrow>\n <annotation>$$ p<0.05 $$</annotation>\n </semantics></math>) in over 95% of tested configurations, with fine-tuning consistently yielding superior results and U-Net benefiting the most from increased target subjects. This study represents the first systematic evaluation of OOD settings in DL applications to fODF estimation, providing critical insights into model robustness and adaptation strategies for diverse clinical and research applications.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501774/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for fODF Estimation in Infant Brains: Model Comparison, Ground-Truth Impact, and Domain Shift Mitigation\",\"authors\":\"Rizhong Lin, Hamza Kebiri, Ali Gholipour, Yufei Chen, Jean-Philippe Thiran, Davood Karimi, Meritxell Bach Cuadra\",\"doi\":\"10.1002/hbm.70367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The accurate estimation of fiber orientation distribution functions (fODFs) in diffusion magnetic resonance imaging (MRI) is crucial for understanding early brain development and its potential disruptions. Although supervised deep learning (DL) models have shown promise in fODF estimation from neonatal diffusion MRI (dMRI) data, the out-of-domain (OOD) performance of these models remains largely unexplored, especially under diverse domain shift scenarios. This study evaluated the robustness of three state-of-the-art DL architectures: multilayer perceptron (MLP), transformer, and U-Net/convolutional neural network (CNN) on fODF predictions derived from dMRI data. Using 488 subjects from the developing Human Connectome Project (dHCP) and the Baby Connectome Project (BCP) datasets, we reconstructed reference fODFs from the full dMRI series using single-shell three-tissue constrained spherical deconvolution (SS3T-CSD) and multi-shell multi-tissue CSD (MSMT-CSD) to generate reference fODF reconstructions for model training, and systematically assessed the impact of age, scanner/protocol differences, and input dimensionality on model performance. Our findings reveal that U-Net consistently outperformed other models when fewer diffusion gradient directions were used, particularly with the SS3T-CSD-derived ground truth, which showed superior performance in capturing crossing fibers. However, as the number of input diffusion gradient directions increased, MLP and the transformer-based model exhibited steady gains in accuracy. Nevertheless, performance nearly plateaued from 28 to 45 input directions in all models. Age-related domain shifts showed asymmetric patterns, being less pronounced in late developmental stages (late neonates, and babies), with SS3T-CSD demonstrating greater robustness to variability compared to MSMT-CSD. To address inter-site domain shifts, we implemented two adaptation strategies: the Method of Moments (MoM) and fine-tuning. Both strategies achieved significant improvements (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo><</mo>\\n <mn>0.05</mn>\\n </mrow>\\n <annotation>$$ p<0.05 $$</annotation>\\n </semantics></math>) in over 95% of tested configurations, with fine-tuning consistently yielding superior results and U-Net benefiting the most from increased target subjects. This study represents the first systematic evaluation of OOD settings in DL applications to fODF estimation, providing critical insights into model robustness and adaptation strategies for diverse clinical and research applications.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 14\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70367\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70367","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Deep Learning for fODF Estimation in Infant Brains: Model Comparison, Ground-Truth Impact, and Domain Shift Mitigation
The accurate estimation of fiber orientation distribution functions (fODFs) in diffusion magnetic resonance imaging (MRI) is crucial for understanding early brain development and its potential disruptions. Although supervised deep learning (DL) models have shown promise in fODF estimation from neonatal diffusion MRI (dMRI) data, the out-of-domain (OOD) performance of these models remains largely unexplored, especially under diverse domain shift scenarios. This study evaluated the robustness of three state-of-the-art DL architectures: multilayer perceptron (MLP), transformer, and U-Net/convolutional neural network (CNN) on fODF predictions derived from dMRI data. Using 488 subjects from the developing Human Connectome Project (dHCP) and the Baby Connectome Project (BCP) datasets, we reconstructed reference fODFs from the full dMRI series using single-shell three-tissue constrained spherical deconvolution (SS3T-CSD) and multi-shell multi-tissue CSD (MSMT-CSD) to generate reference fODF reconstructions for model training, and systematically assessed the impact of age, scanner/protocol differences, and input dimensionality on model performance. Our findings reveal that U-Net consistently outperformed other models when fewer diffusion gradient directions were used, particularly with the SS3T-CSD-derived ground truth, which showed superior performance in capturing crossing fibers. However, as the number of input diffusion gradient directions increased, MLP and the transformer-based model exhibited steady gains in accuracy. Nevertheless, performance nearly plateaued from 28 to 45 input directions in all models. Age-related domain shifts showed asymmetric patterns, being less pronounced in late developmental stages (late neonates, and babies), with SS3T-CSD demonstrating greater robustness to variability compared to MSMT-CSD. To address inter-site domain shifts, we implemented two adaptation strategies: the Method of Moments (MoM) and fine-tuning. Both strategies achieved significant improvements () in over 95% of tested configurations, with fine-tuning consistently yielding superior results and U-Net benefiting the most from increased target subjects. This study represents the first systematic evaluation of OOD settings in DL applications to fODF estimation, providing critical insights into model robustness and adaptation strategies for diverse clinical and research applications.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.