单个Ag-In-Zn-S量子点的光谱扩散阐明了其光致发光机理。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Adam Ćwilich, Patrycja Kowalik, Karolina Sulowska, Pushkar Joshi, Piotr Bujak, Sebastian Maćkowski, Adam Pron, Łukasz Kłopotowski
{"title":"单个Ag-In-Zn-S量子点的光谱扩散阐明了其光致发光机理。","authors":"Adam Ćwilich, Patrycja Kowalik, Karolina Sulowska, Pushkar Joshi, Piotr Bujak, Sebastian Maćkowski, Adam Pron, Łukasz Kłopotowski","doi":"10.1063/5.0290296","DOIUrl":null,"url":null,"abstract":"<p><p>Alloyed Ag-In-Zn-S colloidal quantum dots (QDs) have recently emerged as bright fluorophores with properties compatible with various applications. Although the synthetic procedures are well developed and allow achieving near-unity photoluminescence quantum yields, further development of these nanostructures is hindered by poor understanding of the light emission mechanism. In this work, we employ a tool of single particle spectroscopy-studies of spectral diffusion-to elucidate the nature of the luminescent excited state. By analyzing temporal fluctuations and correlations of the photoluminescence intensity, peak position, and linewidth, we show that this state comprises an electron delocalized over the QD volume and a hole localized at a midgap trap state. We thus challenge the view prevailing in the literature that the photoluminescence in alloyed Ag-In-Zn-S QDs occurs via a donor-acceptor pair recombination mechanism. Furthermore, our single dot measurements reveal various contributions to the photoluminescence line broadening.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 13","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral diffusion of single Ag-In-Zn-S quantum dots elucidates the photoluminescence mechanism.\",\"authors\":\"Adam Ćwilich, Patrycja Kowalik, Karolina Sulowska, Pushkar Joshi, Piotr Bujak, Sebastian Maćkowski, Adam Pron, Łukasz Kłopotowski\",\"doi\":\"10.1063/5.0290296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alloyed Ag-In-Zn-S colloidal quantum dots (QDs) have recently emerged as bright fluorophores with properties compatible with various applications. Although the synthetic procedures are well developed and allow achieving near-unity photoluminescence quantum yields, further development of these nanostructures is hindered by poor understanding of the light emission mechanism. In this work, we employ a tool of single particle spectroscopy-studies of spectral diffusion-to elucidate the nature of the luminescent excited state. By analyzing temporal fluctuations and correlations of the photoluminescence intensity, peak position, and linewidth, we show that this state comprises an electron delocalized over the QD volume and a hole localized at a midgap trap state. We thus challenge the view prevailing in the literature that the photoluminescence in alloyed Ag-In-Zn-S QDs occurs via a donor-acceptor pair recombination mechanism. Furthermore, our single dot measurements reveal various contributions to the photoluminescence line broadening.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"163 13\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0290296\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0290296","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,Ag-In-Zn-S合金胶体量子点(QDs)作为一种明亮的荧光团出现,具有兼容各种应用的特性。虽然合成过程已经发展得很好,并且可以实现接近统一的光致发光量子产率,但由于对发光机制的了解不足,这些纳米结构的进一步发展受到阻碍。在这项工作中,我们采用单粒子光谱-光谱扩散研究的工具来阐明发光激发态的性质。通过分析光致发光强度、峰位和线宽的时间波动和相关性,我们发现这种状态包括一个在量子点体积上离域的电子和一个定域在中隙陷阱态的空穴。因此,我们挑战了文献中普遍存在的观点,即合金Ag-In-Zn-S量子点的光致发光是通过供体-受体对重组机制发生的。此外,我们的单点测量揭示了光致发光线展宽的各种贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral diffusion of single Ag-In-Zn-S quantum dots elucidates the photoluminescence mechanism.

Alloyed Ag-In-Zn-S colloidal quantum dots (QDs) have recently emerged as bright fluorophores with properties compatible with various applications. Although the synthetic procedures are well developed and allow achieving near-unity photoluminescence quantum yields, further development of these nanostructures is hindered by poor understanding of the light emission mechanism. In this work, we employ a tool of single particle spectroscopy-studies of spectral diffusion-to elucidate the nature of the luminescent excited state. By analyzing temporal fluctuations and correlations of the photoluminescence intensity, peak position, and linewidth, we show that this state comprises an electron delocalized over the QD volume and a hole localized at a midgap trap state. We thus challenge the view prevailing in the literature that the photoluminescence in alloyed Ag-In-Zn-S QDs occurs via a donor-acceptor pair recombination mechanism. Furthermore, our single dot measurements reveal various contributions to the photoluminescence line broadening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信