Kadidia Samassekou, Elisabeth E Garland-Kuntz, Vaani Ohri, Isaac J Fisher, Satchal K Erramilli, Kaushik Muralidharan, Livia M Bogdan, Abigail M Gick, Anthony Kossiakoff, Angeline M Lyon
{"title":"磷脂酶Cε的低温电镜结构定义了n端结构域及其在活性中的作用。","authors":"Kadidia Samassekou, Elisabeth E Garland-Kuntz, Vaani Ohri, Isaac J Fisher, Satchal K Erramilli, Kaushik Muralidharan, Livia M Bogdan, Abigail M Gick, Anthony Kossiakoff, Angeline M Lyon","doi":"10.1038/s42003-025-08831-0","DOIUrl":null,"url":null,"abstract":"<p><p>Phospholipase Cε (PLCε) increases intracellular Ca<sup>2+</sup> and protein kinase C (PKC) activity in the cardiovascular system in response to stimulation of G protein coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). The ability of PLCε to respond to these diverse inputs is due, in part, to multiple, conformationally dynamic regulatory domains. However, this heterogeneity has limited structural studies of the lipase to either individual domains or its catalytic core. Here, we report the 3.9 Å reconstruction of the largest fragment of PLCε to date in complex with an antigen binding fragment (Fab). The structure reveals that PLCε contains a pleckstrin homology (PH) domain and four tandem EF hands, including subfamily-specific insertions and intramolecular interactions with the catalytic core. The structure, together with a model of the holoenzyme, suggest that part of the N-terminus and PH domain may form a surface that supports lipase activity. Functional characterization of this surface confirms it is critical for maximum basal and G protein-stimulated activities. This study provides new insights into the autoinhibited, basal conformation of PLCε and how the N-terminal domains contribute to activity.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1429"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501065/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM structure of phospholipase Cε defines N-terminal domains and their roles in activity.\",\"authors\":\"Kadidia Samassekou, Elisabeth E Garland-Kuntz, Vaani Ohri, Isaac J Fisher, Satchal K Erramilli, Kaushik Muralidharan, Livia M Bogdan, Abigail M Gick, Anthony Kossiakoff, Angeline M Lyon\",\"doi\":\"10.1038/s42003-025-08831-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phospholipase Cε (PLCε) increases intracellular Ca<sup>2+</sup> and protein kinase C (PKC) activity in the cardiovascular system in response to stimulation of G protein coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). The ability of PLCε to respond to these diverse inputs is due, in part, to multiple, conformationally dynamic regulatory domains. However, this heterogeneity has limited structural studies of the lipase to either individual domains or its catalytic core. Here, we report the 3.9 Å reconstruction of the largest fragment of PLCε to date in complex with an antigen binding fragment (Fab). The structure reveals that PLCε contains a pleckstrin homology (PH) domain and four tandem EF hands, including subfamily-specific insertions and intramolecular interactions with the catalytic core. The structure, together with a model of the holoenzyme, suggest that part of the N-terminus and PH domain may form a surface that supports lipase activity. Functional characterization of this surface confirms it is critical for maximum basal and G protein-stimulated activities. This study provides new insights into the autoinhibited, basal conformation of PLCε and how the N-terminal domains contribute to activity.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1429\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501065/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08831-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08831-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Cryo-EM structure of phospholipase Cε defines N-terminal domains and their roles in activity.
Phospholipase Cε (PLCε) increases intracellular Ca2+ and protein kinase C (PKC) activity in the cardiovascular system in response to stimulation of G protein coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). The ability of PLCε to respond to these diverse inputs is due, in part, to multiple, conformationally dynamic regulatory domains. However, this heterogeneity has limited structural studies of the lipase to either individual domains or its catalytic core. Here, we report the 3.9 Å reconstruction of the largest fragment of PLCε to date in complex with an antigen binding fragment (Fab). The structure reveals that PLCε contains a pleckstrin homology (PH) domain and four tandem EF hands, including subfamily-specific insertions and intramolecular interactions with the catalytic core. The structure, together with a model of the holoenzyme, suggest that part of the N-terminus and PH domain may form a surface that supports lipase activity. Functional characterization of this surface confirms it is critical for maximum basal and G protein-stimulated activities. This study provides new insights into the autoinhibited, basal conformation of PLCε and how the N-terminal domains contribute to activity.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.