高氧屏障包装材料来自富含蛋白质的单细胞生物。

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kiran Reddy Baddigam, Bor Shin Chee, Elodie Guilloud, Chaitra Venkatesh, Helena Koninckx, Kim Windey, Margaret Brennan Fournet, Mikael Hedenqvist, Anna J Svagan
{"title":"高氧屏障包装材料来自富含蛋白质的单细胞生物。","authors":"Kiran Reddy Baddigam, Bor Shin Chee, Elodie Guilloud, Chaitra Venkatesh, Helena Koninckx, Kim Windey, Margaret Brennan Fournet, Mikael Hedenqvist, Anna J Svagan","doi":"10.1038/s42004-025-01720-x","DOIUrl":null,"url":null,"abstract":"<p><p>Fossil-based packaging materials pose significant environmental challenges due to their persistence and carbon footprint, resulting in pollution and long-term climate change. Here we develop bioplastic packaging alternatives (films and trays) from protein-rich microbial biomass with glycerol as the plasticizer. The microbial biomass demonstrated excellent film-forming properties through compression molding, and the final materials exhibited good mechanical properties and excellent gas barrier properties - an average oxygen permeability coefficient of 0.33 cm<sup>3 </sup>mm m<sup>-2</sup> day<sup>-1</sup> atm<sup>-1</sup> at 50% relative humidity and 23 °C. The oxygen barrier properties highlight these microbial biomass materials as a promising, sustainable alternative to fossil-based synthetic films like EVOH, which are widely used in multilayer food packaging. Beyond offering a microplastic-free solution, the protein-rich materials present an opportunity to mitigate microplastic pollution at the end of their lifecycle. The current results position bioplastics based on microbial biomass as a critical step forward in addressing environmental sustainability challenges with current commercial packaging materials.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"297"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500970/pdf/","citationCount":"0","resultStr":"{\"title\":\"High oxygen barrier packaging materials from protein-rich single-celled organisms.\",\"authors\":\"Kiran Reddy Baddigam, Bor Shin Chee, Elodie Guilloud, Chaitra Venkatesh, Helena Koninckx, Kim Windey, Margaret Brennan Fournet, Mikael Hedenqvist, Anna J Svagan\",\"doi\":\"10.1038/s42004-025-01720-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fossil-based packaging materials pose significant environmental challenges due to their persistence and carbon footprint, resulting in pollution and long-term climate change. Here we develop bioplastic packaging alternatives (films and trays) from protein-rich microbial biomass with glycerol as the plasticizer. The microbial biomass demonstrated excellent film-forming properties through compression molding, and the final materials exhibited good mechanical properties and excellent gas barrier properties - an average oxygen permeability coefficient of 0.33 cm<sup>3 </sup>mm m<sup>-2</sup> day<sup>-1</sup> atm<sup>-1</sup> at 50% relative humidity and 23 °C. The oxygen barrier properties highlight these microbial biomass materials as a promising, sustainable alternative to fossil-based synthetic films like EVOH, which are widely used in multilayer food packaging. Beyond offering a microplastic-free solution, the protein-rich materials present an opportunity to mitigate microplastic pollution at the end of their lifecycle. The current results position bioplastics based on microbial biomass as a critical step forward in addressing environmental sustainability challenges with current commercial packaging materials.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"297\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01720-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01720-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

化石基包装材料由于其持久性和碳足迹,造成污染和长期气候变化,对环境构成重大挑战。在这里,我们开发生物塑料包装替代品(薄膜和托盘)从富含蛋白质的微生物生物量与甘油作为增塑剂。微生物生物量通过压缩成型表现出优异的成膜性能,最终材料表现出良好的力学性能和优异的气体阻隔性能——在50%相对湿度和23°C下,平均透氧系数为0.33 cm3 mm m-2 day-1 atm-1。阻氧性能突出了这些微生物生物质材料作为化石基合成薄膜(如EVOH)的一种有前途的、可持续的替代品,EVOH广泛用于多层食品包装。除了提供无微塑料的解决方案外,富含蛋白质的材料还提供了在其生命周期结束时减轻微塑料污染的机会。目前的研究结果表明,基于微生物生物量的生物塑料是解决当前商业包装材料环境可持续性挑战的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High oxygen barrier packaging materials from protein-rich single-celled organisms.

Fossil-based packaging materials pose significant environmental challenges due to their persistence and carbon footprint, resulting in pollution and long-term climate change. Here we develop bioplastic packaging alternatives (films and trays) from protein-rich microbial biomass with glycerol as the plasticizer. The microbial biomass demonstrated excellent film-forming properties through compression molding, and the final materials exhibited good mechanical properties and excellent gas barrier properties - an average oxygen permeability coefficient of 0.33 cm3 mm m-2 day-1 atm-1 at 50% relative humidity and 23 °C. The oxygen barrier properties highlight these microbial biomass materials as a promising, sustainable alternative to fossil-based synthetic films like EVOH, which are widely used in multilayer food packaging. Beyond offering a microplastic-free solution, the protein-rich materials present an opportunity to mitigate microplastic pollution at the end of their lifecycle. The current results position bioplastics based on microbial biomass as a critical step forward in addressing environmental sustainability challenges with current commercial packaging materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信