Toshiki Yamada, Paola Bisignano, Erkan Karakas, Jerod S Denton
{"title":"两种结构不同的药物抑制LRRC8通道的保守机制。","authors":"Toshiki Yamada, Paola Bisignano, Erkan Karakas, Jerod S Denton","doi":"10.1038/s42003-025-08795-1","DOIUrl":null,"url":null,"abstract":"<p><p>Leucine Rich Repeat Containing 8 (LRRC8) anion channels are emerging therapeutic targets, but their pharmacology is poorly developed. We employed a structurally defined homomeric channel chimera (8C-8A(IL1<sup>25</sup>)) and heteromeric LRRC8A/LRRC8C (8A/8C) channels to investigate the mechanism of action of two structurally distinct LRRC8 inhibitors: zafirlukast and pranlukast. Molecular dynamics simulations identified zafirlukast binding sites in 8C-8A(IL1<sup>25</sup>) comprising the amino (N)-terminal domain (NTD) and inter-subunit fenestrae between transmembrane (TM) helices 1 and 2. Pranlukast also clusters in fenestrae albeit closer to the external pore. Patch clamp analysis revealed that mutations in NTD, TM1, and TM2 alter 8C-8A(IL1<sup>25</sup>) and 8A/8C sensitivity to zafirlukast and pranlukast, suggesting a common mechanism. The association between voltage-dependent inactivation induced by mutations or low pH and inhibitor sensitivity suggests that drug inhibition involves disruption of protein-lipid interactions and destabilization of the pore. This may represent a common mechanism of LRRC8 channel inhibition by lipophilic drugs.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1432"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501385/pdf/","citationCount":"0","resultStr":"{\"title\":\"A conserved mechanism of LRRC8 channel inhibition by two structurally distinct drugs.\",\"authors\":\"Toshiki Yamada, Paola Bisignano, Erkan Karakas, Jerod S Denton\",\"doi\":\"10.1038/s42003-025-08795-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leucine Rich Repeat Containing 8 (LRRC8) anion channels are emerging therapeutic targets, but their pharmacology is poorly developed. We employed a structurally defined homomeric channel chimera (8C-8A(IL1<sup>25</sup>)) and heteromeric LRRC8A/LRRC8C (8A/8C) channels to investigate the mechanism of action of two structurally distinct LRRC8 inhibitors: zafirlukast and pranlukast. Molecular dynamics simulations identified zafirlukast binding sites in 8C-8A(IL1<sup>25</sup>) comprising the amino (N)-terminal domain (NTD) and inter-subunit fenestrae between transmembrane (TM) helices 1 and 2. Pranlukast also clusters in fenestrae albeit closer to the external pore. Patch clamp analysis revealed that mutations in NTD, TM1, and TM2 alter 8C-8A(IL1<sup>25</sup>) and 8A/8C sensitivity to zafirlukast and pranlukast, suggesting a common mechanism. The association between voltage-dependent inactivation induced by mutations or low pH and inhibitor sensitivity suggests that drug inhibition involves disruption of protein-lipid interactions and destabilization of the pore. This may represent a common mechanism of LRRC8 channel inhibition by lipophilic drugs.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1432\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08795-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08795-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A conserved mechanism of LRRC8 channel inhibition by two structurally distinct drugs.
Leucine Rich Repeat Containing 8 (LRRC8) anion channels are emerging therapeutic targets, but their pharmacology is poorly developed. We employed a structurally defined homomeric channel chimera (8C-8A(IL125)) and heteromeric LRRC8A/LRRC8C (8A/8C) channels to investigate the mechanism of action of two structurally distinct LRRC8 inhibitors: zafirlukast and pranlukast. Molecular dynamics simulations identified zafirlukast binding sites in 8C-8A(IL125) comprising the amino (N)-terminal domain (NTD) and inter-subunit fenestrae between transmembrane (TM) helices 1 and 2. Pranlukast also clusters in fenestrae albeit closer to the external pore. Patch clamp analysis revealed that mutations in NTD, TM1, and TM2 alter 8C-8A(IL125) and 8A/8C sensitivity to zafirlukast and pranlukast, suggesting a common mechanism. The association between voltage-dependent inactivation induced by mutations or low pH and inhibitor sensitivity suggests that drug inhibition involves disruption of protein-lipid interactions and destabilization of the pore. This may represent a common mechanism of LRRC8 channel inhibition by lipophilic drugs.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.