{"title":"原肌球蛋白受体激酶信号转导的分子决定因素。","authors":"Giray Enkavi","doi":"10.1002/2211-5463.70135","DOIUrl":null,"url":null,"abstract":"<p><p>Tropomyosin receptor kinase (Trk) receptors are essential regulators of neuronal development, survival, and plasticity through their interactions with neurotrophins. This review examines the structural and molecular mechanisms connecting ligand binding to the diverse signaling outcomes of Trk receptors. We analyze how neurotrophin binding and allosteric interactions trigger conformational changes that activate distinct signaling pathways. Our discussion explores how allosteric modulation-binding of ligands to sites distinct from the primary receptor site-and ligand bias-where different neurotrophins binding the same receptor preferentially activate certain downstream pathways-may together shape receptor function, focusing on structural and conformational mechanisms. Despite recent advances, important structural details remain unresolved. Further insights into Trk receptor structure and dynamics could significantly enhance therapeutic development by enabling the design of drugs that selectively target-specific signaling pathways.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular determinants of signal transduction in tropomyosin receptor kinases.\",\"authors\":\"Giray Enkavi\",\"doi\":\"10.1002/2211-5463.70135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tropomyosin receptor kinase (Trk) receptors are essential regulators of neuronal development, survival, and plasticity through their interactions with neurotrophins. This review examines the structural and molecular mechanisms connecting ligand binding to the diverse signaling outcomes of Trk receptors. We analyze how neurotrophin binding and allosteric interactions trigger conformational changes that activate distinct signaling pathways. Our discussion explores how allosteric modulation-binding of ligands to sites distinct from the primary receptor site-and ligand bias-where different neurotrophins binding the same receptor preferentially activate certain downstream pathways-may together shape receptor function, focusing on structural and conformational mechanisms. Despite recent advances, important structural details remain unresolved. Further insights into Trk receptor structure and dynamics could significantly enhance therapeutic development by enabling the design of drugs that selectively target-specific signaling pathways.</p>\",\"PeriodicalId\":12187,\"journal\":{\"name\":\"FEBS Open Bio\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Open Bio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/2211-5463.70135\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.70135","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular determinants of signal transduction in tropomyosin receptor kinases.
Tropomyosin receptor kinase (Trk) receptors are essential regulators of neuronal development, survival, and plasticity through their interactions with neurotrophins. This review examines the structural and molecular mechanisms connecting ligand binding to the diverse signaling outcomes of Trk receptors. We analyze how neurotrophin binding and allosteric interactions trigger conformational changes that activate distinct signaling pathways. Our discussion explores how allosteric modulation-binding of ligands to sites distinct from the primary receptor site-and ligand bias-where different neurotrophins binding the same receptor preferentially activate certain downstream pathways-may together shape receptor function, focusing on structural and conformational mechanisms. Despite recent advances, important structural details remain unresolved. Further insights into Trk receptor structure and dynamics could significantly enhance therapeutic development by enabling the design of drugs that selectively target-specific signaling pathways.
期刊介绍:
FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community.
FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.