ACSL1缺失促进透明细胞肾癌的铁下垂抵抗。

IF 4.6 4区 医学 Q2 ONCOLOGY
Cancer Biology & Therapy Pub Date : 2025-12-31 Epub Date: 2025-10-06 DOI:10.1080/15384047.2025.2567815
Shangguo Wang, Yuxiong Wang, Bin Liu, Dan Zhang, Zehua Zhang, Hongxia Yang, Guangtao Li, Xiaodong Zhao, Jiaxin Liu, Qianhui Li, Yifan Song, Yanghe Zhang, Yishu Wang, Honglan Zhou
{"title":"ACSL1缺失促进透明细胞肾癌的铁下垂抵抗。","authors":"Shangguo Wang, Yuxiong Wang, Bin Liu, Dan Zhang, Zehua Zhang, Hongxia Yang, Guangtao Li, Xiaodong Zhao, Jiaxin Liu, Qianhui Li, Yifan Song, Yanghe Zhang, Yishu Wang, Honglan Zhou","doi":"10.1080/15384047.2025.2567815","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clear cell renal cell carcinoma (ccRCC), the most common kidney cancer subtype, is marked by lipid metabolism reprogramming and therapy resistance. Ferroptosis-an iron-dependent, lipid peroxidation-driven cell death-has gained attention as a therapeutic strategy. This study investigates the role of ACSL1, a key lipid metabolism enzyme, in ccRCC.</p><p><strong>Methods: </strong>Using TCGA/GEO datasets, qPCR, immunohistochemistry, and immunofluorescence, ACSL1 expression and clinical significance were analyzed. Functional assays with ACSL1-overexpressing ccRCC cells and a xenograft mouse model evaluated its impact on tumor behavior. Transcriptomics and lipidomics, alongside ROS, ferroptosis, and p53 inhibitors, were applied to uncover mechanisms.</p><p><strong>Results: </strong>ACSL1 is markedly downregulated in ccRCC and predicts poor prognosis. Overexpression suppressed proliferation and migration, induced cell death, and slowed tumor growth. Mechanistically, ACSL1 elevated ROS, activated p53, downregulated SLC7A11/GPX4, and triggered ferroptosis. Blocking ROS or p53 reversed these effects, confirming a ROS-p53-SLC7A11/GPX4 feedback loop.</p><p><strong>Conclusion: </strong>ACSL1 functions as a tumor suppressor in ccRCC by inducing ferroptosis via the ROS-p53-SLC7A11/GPX4 axis. It holds promise as a prognostic biomarker and therapeutic target in ccRCC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2567815"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Loss of ACSL1 fuels ferroptosis resistance in clear cell renal carcinoma.\",\"authors\":\"Shangguo Wang, Yuxiong Wang, Bin Liu, Dan Zhang, Zehua Zhang, Hongxia Yang, Guangtao Li, Xiaodong Zhao, Jiaxin Liu, Qianhui Li, Yifan Song, Yanghe Zhang, Yishu Wang, Honglan Zhou\",\"doi\":\"10.1080/15384047.2025.2567815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Clear cell renal cell carcinoma (ccRCC), the most common kidney cancer subtype, is marked by lipid metabolism reprogramming and therapy resistance. Ferroptosis-an iron-dependent, lipid peroxidation-driven cell death-has gained attention as a therapeutic strategy. This study investigates the role of ACSL1, a key lipid metabolism enzyme, in ccRCC.</p><p><strong>Methods: </strong>Using TCGA/GEO datasets, qPCR, immunohistochemistry, and immunofluorescence, ACSL1 expression and clinical significance were analyzed. Functional assays with ACSL1-overexpressing ccRCC cells and a xenograft mouse model evaluated its impact on tumor behavior. Transcriptomics and lipidomics, alongside ROS, ferroptosis, and p53 inhibitors, were applied to uncover mechanisms.</p><p><strong>Results: </strong>ACSL1 is markedly downregulated in ccRCC and predicts poor prognosis. Overexpression suppressed proliferation and migration, induced cell death, and slowed tumor growth. Mechanistically, ACSL1 elevated ROS, activated p53, downregulated SLC7A11/GPX4, and triggered ferroptosis. Blocking ROS or p53 reversed these effects, confirming a ROS-p53-SLC7A11/GPX4 feedback loop.</p><p><strong>Conclusion: </strong>ACSL1 functions as a tumor suppressor in ccRCC by inducing ferroptosis via the ROS-p53-SLC7A11/GPX4 axis. It holds promise as a prognostic biomarker and therapeutic target in ccRCC.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"26 1\",\"pages\":\"2567815\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2025.2567815\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2567815","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:透明细胞肾细胞癌(Clear cell renal cell carcinoma, ccRCC)是最常见的肾癌亚型,其特点是脂质代谢重编程和治疗抵抗。死铁是一种铁依赖性、脂质过氧化驱动的细胞死亡,作为一种治疗策略已经引起了人们的关注。本研究探讨了关键脂质代谢酶ACSL1在ccRCC中的作用。方法:采用TCGA/GEO数据集、qPCR、免疫组织化学和免疫荧光分析ACSL1的表达及临床意义。用acsl1过表达的ccRCC细胞和异种移植小鼠模型进行功能分析,评估其对肿瘤行为的影响。转录组学和脂质组学,以及ROS,铁下垂和p53抑制剂,被用于揭示机制。结果:ACSL1在ccRCC中显著下调,与预后不良有关。过表达抑制增殖和迁移,诱导细胞死亡,减缓肿瘤生长。机制上,ACSL1升高ROS,激活p53,下调SLC7A11/GPX4,触发铁下垂。阻断ROS或p53逆转了这些作用,证实了ROS-p53- slc7a11 /GPX4反馈回路。结论:ACSL1通过ROS-p53-SLC7A11/GPX4轴诱导铁下垂,在ccRCC中发挥抑癌作用。它有望成为ccRCC的预后生物标志物和治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loss of ACSL1 fuels ferroptosis resistance in clear cell renal carcinoma.

Background: Clear cell renal cell carcinoma (ccRCC), the most common kidney cancer subtype, is marked by lipid metabolism reprogramming and therapy resistance. Ferroptosis-an iron-dependent, lipid peroxidation-driven cell death-has gained attention as a therapeutic strategy. This study investigates the role of ACSL1, a key lipid metabolism enzyme, in ccRCC.

Methods: Using TCGA/GEO datasets, qPCR, immunohistochemistry, and immunofluorescence, ACSL1 expression and clinical significance were analyzed. Functional assays with ACSL1-overexpressing ccRCC cells and a xenograft mouse model evaluated its impact on tumor behavior. Transcriptomics and lipidomics, alongside ROS, ferroptosis, and p53 inhibitors, were applied to uncover mechanisms.

Results: ACSL1 is markedly downregulated in ccRCC and predicts poor prognosis. Overexpression suppressed proliferation and migration, induced cell death, and slowed tumor growth. Mechanistically, ACSL1 elevated ROS, activated p53, downregulated SLC7A11/GPX4, and triggered ferroptosis. Blocking ROS or p53 reversed these effects, confirming a ROS-p53-SLC7A11/GPX4 feedback loop.

Conclusion: ACSL1 functions as a tumor suppressor in ccRCC by inducing ferroptosis via the ROS-p53-SLC7A11/GPX4 axis. It holds promise as a prognostic biomarker and therapeutic target in ccRCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信