{"title":"锌通过钙敏感受体(CaSR)抑制camp诱导的肠上皮细胞Cl-分泌。","authors":"Pattareeya Yottasan, Tifany Chu, Qi Gao, Parth Chhetri, Sadik Taskin Tas, Onur Cil","doi":"10.1152/ajpcell.00614.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc is a commonly used antidiarrheal supplement; however, its exact mechanism of action is not well understood. Calcium-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for secretory diarrhea. CaSR is activated by various cations and here we investigated the roles of CaSR in the antidiarrheal effects of the divalent metal zinc (Zn<sup>2+</sup>). In human intestinal T84 cells expressing CaSR, zinc (100 μM) inhibited forskolin-induced secretory I<sub>sc</sub> by 60% and its effect was comparable to CaSR activator cinacalcet. Zinc effect was via inhibition of apical CFTR Cl<sup>-</sup> channel and basolateral K<sup>+</sup> channels. In cell models, zinc was a CaSR agonist and its antisecretory effects were CaSR-dependent. Similarly, 100 μM zinc inhibited forskolin-induced secretory I<sub>sc</sub> by 40% in wildtype mouse intestine with no antisecretory effects in intestinal epithelia-specific CaSR knockout mice (Casr<sup>flox/flox</sup>;Vil1-cre). Zinc inhibited I<sub>sc</sub> induced by clinically-relevant cAMP agonists (cholera toxin and vasoactive intestinal peptide) by 65% in T84 cells. Interestingly, zinc had no effect on cGMP agonists (heat-stable E. coli enterotoxin and linaclotide)-induced secretory I<sub>sc</sub>, suggesting its antisecretory effects are specific to cAMP. The mechanisms of zinc effect in T84 cells involved intracellular Ca<sup>2+</sup> release via ryanodine receptors and inhibition of cAMP synthesis. Our findings suggest that CaSR activation is a major mechanism for the antidiarrheal effects of zinc which specifically reduces cAMP levels. In addition to its use in cholera, zinc can be effective in other cAMP-mediated secretory diarrheas.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc inhibits cAMP-induced Cl<sup>-</sup> secretion in intestinal epithelial cells via calcium-sensing receptor (CaSR).\",\"authors\":\"Pattareeya Yottasan, Tifany Chu, Qi Gao, Parth Chhetri, Sadik Taskin Tas, Onur Cil\",\"doi\":\"10.1152/ajpcell.00614.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc is a commonly used antidiarrheal supplement; however, its exact mechanism of action is not well understood. Calcium-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for secretory diarrhea. CaSR is activated by various cations and here we investigated the roles of CaSR in the antidiarrheal effects of the divalent metal zinc (Zn<sup>2+</sup>). In human intestinal T84 cells expressing CaSR, zinc (100 μM) inhibited forskolin-induced secretory I<sub>sc</sub> by 60% and its effect was comparable to CaSR activator cinacalcet. Zinc effect was via inhibition of apical CFTR Cl<sup>-</sup> channel and basolateral K<sup>+</sup> channels. In cell models, zinc was a CaSR agonist and its antisecretory effects were CaSR-dependent. Similarly, 100 μM zinc inhibited forskolin-induced secretory I<sub>sc</sub> by 40% in wildtype mouse intestine with no antisecretory effects in intestinal epithelia-specific CaSR knockout mice (Casr<sup>flox/flox</sup>;Vil1-cre). Zinc inhibited I<sub>sc</sub> induced by clinically-relevant cAMP agonists (cholera toxin and vasoactive intestinal peptide) by 65% in T84 cells. Interestingly, zinc had no effect on cGMP agonists (heat-stable E. coli enterotoxin and linaclotide)-induced secretory I<sub>sc</sub>, suggesting its antisecretory effects are specific to cAMP. The mechanisms of zinc effect in T84 cells involved intracellular Ca<sup>2+</sup> release via ryanodine receptors and inhibition of cAMP synthesis. Our findings suggest that CaSR activation is a major mechanism for the antidiarrheal effects of zinc which specifically reduces cAMP levels. In addition to its use in cholera, zinc can be effective in other cAMP-mediated secretory diarrheas.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00614.2025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00614.2025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Zinc inhibits cAMP-induced Cl- secretion in intestinal epithelial cells via calcium-sensing receptor (CaSR).
Zinc is a commonly used antidiarrheal supplement; however, its exact mechanism of action is not well understood. Calcium-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for secretory diarrhea. CaSR is activated by various cations and here we investigated the roles of CaSR in the antidiarrheal effects of the divalent metal zinc (Zn2+). In human intestinal T84 cells expressing CaSR, zinc (100 μM) inhibited forskolin-induced secretory Isc by 60% and its effect was comparable to CaSR activator cinacalcet. Zinc effect was via inhibition of apical CFTR Cl- channel and basolateral K+ channels. In cell models, zinc was a CaSR agonist and its antisecretory effects were CaSR-dependent. Similarly, 100 μM zinc inhibited forskolin-induced secretory Isc by 40% in wildtype mouse intestine with no antisecretory effects in intestinal epithelia-specific CaSR knockout mice (Casrflox/flox;Vil1-cre). Zinc inhibited Isc induced by clinically-relevant cAMP agonists (cholera toxin and vasoactive intestinal peptide) by 65% in T84 cells. Interestingly, zinc had no effect on cGMP agonists (heat-stable E. coli enterotoxin and linaclotide)-induced secretory Isc, suggesting its antisecretory effects are specific to cAMP. The mechanisms of zinc effect in T84 cells involved intracellular Ca2+ release via ryanodine receptors and inhibition of cAMP synthesis. Our findings suggest that CaSR activation is a major mechanism for the antidiarrheal effects of zinc which specifically reduces cAMP levels. In addition to its use in cholera, zinc can be effective in other cAMP-mediated secretory diarrheas.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.