Diana L Six, Almuth Hammerbacher, Amy Trowbridge, Lorinda Bullington
{"title":"从头到尾:杀死树木的树皮甲虫、真菌和树木的协同作用。","authors":"Diana L Six, Almuth Hammerbacher, Amy Trowbridge, Lorinda Bullington","doi":"10.1111/brv.70084","DOIUrl":null,"url":null,"abstract":"<p><p>Over a century of research has revealed an amazing complexity of behaviours and physiological adaptations that allow tiny bark beetles to overcome large trees, sometimes resulting in outbreaks that kill millions of trees. Turning a tree into a home and successfully raising offspring involves constant interactions among the beetles, the tree, its microbiome, and the beetles' associated microbes, all influenced by abiotic factors that can determine success or failure. While we have learned much about these systems, substantial knowledge gaps remain. This synthesis aims to clarify and integrate current understanding, identify gaps, challenge long-held assumptions, and address interpretative issues that impede progress toward a holistic understanding of these systems. We advocate for expanding perspectives using synecological approaches to understand these complex systems better. We encourage expanding research into how colonization by the bark beetle-fungi complex influences subsequent tree decay and forest carbon dynamics. An explicit goal is to provide a comprehensive resource for new researchers while encouraging them to question established hypotheses and to explore new avenues of enquiry.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From beginning to end: the synecology of tree-killing bark beetles, fungi, and trees.\",\"authors\":\"Diana L Six, Almuth Hammerbacher, Amy Trowbridge, Lorinda Bullington\",\"doi\":\"10.1111/brv.70084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over a century of research has revealed an amazing complexity of behaviours and physiological adaptations that allow tiny bark beetles to overcome large trees, sometimes resulting in outbreaks that kill millions of trees. Turning a tree into a home and successfully raising offspring involves constant interactions among the beetles, the tree, its microbiome, and the beetles' associated microbes, all influenced by abiotic factors that can determine success or failure. While we have learned much about these systems, substantial knowledge gaps remain. This synthesis aims to clarify and integrate current understanding, identify gaps, challenge long-held assumptions, and address interpretative issues that impede progress toward a holistic understanding of these systems. We advocate for expanding perspectives using synecological approaches to understand these complex systems better. We encourage expanding research into how colonization by the bark beetle-fungi complex influences subsequent tree decay and forest carbon dynamics. An explicit goal is to provide a comprehensive resource for new researchers while encouraging them to question established hypotheses and to explore new avenues of enquiry.</p>\",\"PeriodicalId\":133,\"journal\":{\"name\":\"Biological Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/brv.70084\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70084","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
From beginning to end: the synecology of tree-killing bark beetles, fungi, and trees.
Over a century of research has revealed an amazing complexity of behaviours and physiological adaptations that allow tiny bark beetles to overcome large trees, sometimes resulting in outbreaks that kill millions of trees. Turning a tree into a home and successfully raising offspring involves constant interactions among the beetles, the tree, its microbiome, and the beetles' associated microbes, all influenced by abiotic factors that can determine success or failure. While we have learned much about these systems, substantial knowledge gaps remain. This synthesis aims to clarify and integrate current understanding, identify gaps, challenge long-held assumptions, and address interpretative issues that impede progress toward a holistic understanding of these systems. We advocate for expanding perspectives using synecological approaches to understand these complex systems better. We encourage expanding research into how colonization by the bark beetle-fungi complex influences subsequent tree decay and forest carbon dynamics. An explicit goal is to provide a comprehensive resource for new researchers while encouraging them to question established hypotheses and to explore new avenues of enquiry.
期刊介绍:
Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly.
The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions.
The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field.
Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.