Ewelina Klichowska, Anna Wróbel, Arkadiusz Nowak, Marcin Nobis
{"title":"生态进化基因组学揭示高山特有物种对气候变化的适应性和种内变异。","authors":"Ewelina Klichowska, Anna Wróbel, Arkadiusz Nowak, Marcin Nobis","doi":"10.1111/mec.70113","DOIUrl":null,"url":null,"abstract":"<p><p>Alpine plants restricted to rocky habitats exhibit intraspecific diversification due to range fragmentation during Holocene warming, complicating predictions of their climate vulnerability. A lack of understanding of eco-evolutionary mechanisms driving their response to climate change results in ineffective conservation efforts. To uncover the genomic basis of their diversification and explain spatial patterns of their vulnerability, we combine landscape genomics and species distribution modelling. Our model, the Campanula lehmanniana complex, occurs in three distinct central Asian mountain ranges, considered both a biodiversity hotspot and a vascular plant diversity darkspot. Genome-environment association confirmed the adaptive basis of intraspecific diversification, driven by numerous loci of small effect. Genomic and ecological data indicate mountain range-specific climate sensitivity driven by altitude, temperature and precipitation. The cold-dry adapted group from Zeravshan-Hissar Mts will face niche decline but show a higher degree of preadaptation to future climate, while the temperate-humid group from Tian Shan shows an opposite response, with a higher risk of maladaptation despite predicted niche expansion. Maladapted populations at northern margins may require an influx of adaptive variation to cope with predicted changes. However, limited landscape connectivity between island-like habitats, combined with long migration distances required to minimise genotype-environment disruption, highlights the role of human-assisted migration in enabling evolutionary rescue. These results underscore the need to facilitate gene flow from pre- to maladapted populations and the importance of population-specific approaches to inform effective conservation strategies in heterogeneous mountain ecosystems. The results may be relevant to numerous Central Asian mountain species that show similar phylogeographic patterns.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e70113"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-Evolutionary Genomics Reveal Mountain Range-Specific Adaptation and Intraspecific Variation in Vulnerability to Climate Change of Alpine Endemics.\",\"authors\":\"Ewelina Klichowska, Anna Wróbel, Arkadiusz Nowak, Marcin Nobis\",\"doi\":\"10.1111/mec.70113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alpine plants restricted to rocky habitats exhibit intraspecific diversification due to range fragmentation during Holocene warming, complicating predictions of their climate vulnerability. A lack of understanding of eco-evolutionary mechanisms driving their response to climate change results in ineffective conservation efforts. To uncover the genomic basis of their diversification and explain spatial patterns of their vulnerability, we combine landscape genomics and species distribution modelling. Our model, the Campanula lehmanniana complex, occurs in three distinct central Asian mountain ranges, considered both a biodiversity hotspot and a vascular plant diversity darkspot. Genome-environment association confirmed the adaptive basis of intraspecific diversification, driven by numerous loci of small effect. Genomic and ecological data indicate mountain range-specific climate sensitivity driven by altitude, temperature and precipitation. The cold-dry adapted group from Zeravshan-Hissar Mts will face niche decline but show a higher degree of preadaptation to future climate, while the temperate-humid group from Tian Shan shows an opposite response, with a higher risk of maladaptation despite predicted niche expansion. Maladapted populations at northern margins may require an influx of adaptive variation to cope with predicted changes. However, limited landscape connectivity between island-like habitats, combined with long migration distances required to minimise genotype-environment disruption, highlights the role of human-assisted migration in enabling evolutionary rescue. These results underscore the need to facilitate gene flow from pre- to maladapted populations and the importance of population-specific approaches to inform effective conservation strategies in heterogeneous mountain ecosystems. The results may be relevant to numerous Central Asian mountain species that show similar phylogeographic patterns.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e70113\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.70113\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.70113","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Eco-Evolutionary Genomics Reveal Mountain Range-Specific Adaptation and Intraspecific Variation in Vulnerability to Climate Change of Alpine Endemics.
Alpine plants restricted to rocky habitats exhibit intraspecific diversification due to range fragmentation during Holocene warming, complicating predictions of their climate vulnerability. A lack of understanding of eco-evolutionary mechanisms driving their response to climate change results in ineffective conservation efforts. To uncover the genomic basis of their diversification and explain spatial patterns of their vulnerability, we combine landscape genomics and species distribution modelling. Our model, the Campanula lehmanniana complex, occurs in three distinct central Asian mountain ranges, considered both a biodiversity hotspot and a vascular plant diversity darkspot. Genome-environment association confirmed the adaptive basis of intraspecific diversification, driven by numerous loci of small effect. Genomic and ecological data indicate mountain range-specific climate sensitivity driven by altitude, temperature and precipitation. The cold-dry adapted group from Zeravshan-Hissar Mts will face niche decline but show a higher degree of preadaptation to future climate, while the temperate-humid group from Tian Shan shows an opposite response, with a higher risk of maladaptation despite predicted niche expansion. Maladapted populations at northern margins may require an influx of adaptive variation to cope with predicted changes. However, limited landscape connectivity between island-like habitats, combined with long migration distances required to minimise genotype-environment disruption, highlights the role of human-assisted migration in enabling evolutionary rescue. These results underscore the need to facilitate gene flow from pre- to maladapted populations and the importance of population-specific approaches to inform effective conservation strategies in heterogeneous mountain ecosystems. The results may be relevant to numerous Central Asian mountain species that show similar phylogeographic patterns.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms