纳米多孔钴掺杂Fe3P促进硝酸盐电化学还原

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-08-15 DOI:10.1002/cctc.202501002
Xiechen Zhang, Yanqin Liang, Hui Jiang, Zhaoyang Li, Zhonghui Gao, Shuilin Wu, Zhenduo Cui, Shengli Zhu, Wence Xu
{"title":"纳米多孔钴掺杂Fe3P促进硝酸盐电化学还原","authors":"Xiechen Zhang,&nbsp;Yanqin Liang,&nbsp;Hui Jiang,&nbsp;Zhaoyang Li,&nbsp;Zhonghui Gao,&nbsp;Shuilin Wu,&nbsp;Zhenduo Cui,&nbsp;Shengli Zhu,&nbsp;Wence Xu","doi":"10.1002/cctc.202501002","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) offers a sustainable avenue for mitigating nitrate pollution and enabling decentralized ammonia production. However, achieving high efficiency and selectivity remains challenging due to the sluggish multielectron transfer kinetics. Herein, we report a nanoporous Co-Fe<sub>3</sub>P catalyst featuring cobalt-doped iron phosphide frameworks that modulate the d band center, thereby optimizing intermediate binding and enhancing catalytic performance. The catalyst delivers a high ammonia yield rate of 24.56 mg h<sup>−1</sup> cm<sup>−</sup><sup>2</sup> and a Faradaic efficiency of 91.45% at −0.4 V versus reversible hydrogen electrode (RHE) in alkaline media. In situ infrared spectroscopy identifies key intermediates, such as NH<sub>2</sub>OH, NO<sub>2</sub><sup>−</sup>, and NH<sub>2</sub>, indicative of an associative pathway. Furthermore, when integrated into a Zn–NO<sub>3</sub><sup>−</sup> battery, the Co-Fe<sub>3</sub>P cathode enables a high-power density of 15.83 mW cm<sup>−</sup><sup>2</sup> with excellent Faradaic efficiency and cycling stability.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 19","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoporous Cobalt-Doped Fe3P for Boosted Electrochemical Nitrate Reduction\",\"authors\":\"Xiechen Zhang,&nbsp;Yanqin Liang,&nbsp;Hui Jiang,&nbsp;Zhaoyang Li,&nbsp;Zhonghui Gao,&nbsp;Shuilin Wu,&nbsp;Zhenduo Cui,&nbsp;Shengli Zhu,&nbsp;Wence Xu\",\"doi\":\"10.1002/cctc.202501002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) offers a sustainable avenue for mitigating nitrate pollution and enabling decentralized ammonia production. However, achieving high efficiency and selectivity remains challenging due to the sluggish multielectron transfer kinetics. Herein, we report a nanoporous Co-Fe<sub>3</sub>P catalyst featuring cobalt-doped iron phosphide frameworks that modulate the d band center, thereby optimizing intermediate binding and enhancing catalytic performance. The catalyst delivers a high ammonia yield rate of 24.56 mg h<sup>−1</sup> cm<sup>−</sup><sup>2</sup> and a Faradaic efficiency of 91.45% at −0.4 V versus reversible hydrogen electrode (RHE) in alkaline media. In situ infrared spectroscopy identifies key intermediates, such as NH<sub>2</sub>OH, NO<sub>2</sub><sup>−</sup>, and NH<sub>2</sub>, indicative of an associative pathway. Furthermore, when integrated into a Zn–NO<sub>3</sub><sup>−</sup> battery, the Co-Fe<sub>3</sub>P cathode enables a high-power density of 15.83 mW cm<sup>−</sup><sup>2</sup> with excellent Faradaic efficiency and cycling stability.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202501002\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202501002","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电催化硝酸还原反应(NO3RR)为减轻硝酸盐污染和分散氨生产提供了可持续的途径。然而,由于多电子传递动力学缓慢,实现高效率和选择性仍然具有挑战性。在此,我们报道了一种纳米多孔Co-Fe3P催化剂,该催化剂具有钴掺杂磷化铁框架,可以调节d带中心,从而优化中间结合并提高催化性能。与可逆氢电极(RHE)相比,该催化剂在碱性介质中具有24.56 mg h−1 cm−2的高氨产率和91.45%的法拉第效率。原位红外光谱识别关键中间体,如NH2OH, NO2 -和NH2,表明了一个结合途径。此外,当集成到Zn-NO3 -电池中时,Co-Fe3P阴极可以实现15.83 mW cm - 2的高功率密度,具有出色的法拉第效率和循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoporous Cobalt-Doped Fe3P for Boosted Electrochemical Nitrate Reduction

Nanoporous Cobalt-Doped Fe3P for Boosted Electrochemical Nitrate Reduction

Electrocatalytic nitrate reduction reaction (NO3RR) offers a sustainable avenue for mitigating nitrate pollution and enabling decentralized ammonia production. However, achieving high efficiency and selectivity remains challenging due to the sluggish multielectron transfer kinetics. Herein, we report a nanoporous Co-Fe3P catalyst featuring cobalt-doped iron phosphide frameworks that modulate the d band center, thereby optimizing intermediate binding and enhancing catalytic performance. The catalyst delivers a high ammonia yield rate of 24.56 mg h−1 cm2 and a Faradaic efficiency of 91.45% at −0.4 V versus reversible hydrogen electrode (RHE) in alkaline media. In situ infrared spectroscopy identifies key intermediates, such as NH2OH, NO2, and NH2, indicative of an associative pathway. Furthermore, when integrated into a Zn–NO3 battery, the Co-Fe3P cathode enables a high-power density of 15.83 mW cm2 with excellent Faradaic efficiency and cycling stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信