{"title":"利用双酶系统和酶工程相结合的方法,从土壤细菌基因组中鉴定出一种新的PET水解酶","authors":"Hideaki Mabashi-Asazuma, Makoto Hirai, Shigeru Sakurai, Keigo Ide, Masato Kogawa, Ai Matsushita, Masahito Hosokawa, Soichiro Tsuda","doi":"10.1002/cctc.202500364","DOIUrl":null,"url":null,"abstract":"<p>We here report a novel PET hydrolase originating from a soil microbial genome sequence. This enzyme, bbPET0069, exhibits characteristics resembling a cutinase-like Type I PET-degrading enzyme but lacks disulfide bonds. Notably, bbPET0069 displayed remarkable synergy with <i>Candida antarctica</i> lipase B (CALB), demonstrating rapid and efficient PET degradation. To improve the PET degradation activity of bbPET0069, we employed a 3D structural modeling to identify mutation sites around its substrate binding domain combined with a protein language model for effective mutation prediction. Through three initial rounds of directed evolution, we achieved a significant enhancement in PET degradation with CALB, resulting in a 12.6-fold increase compared to wild-type bbPET0069 without CALB. We confirmed its PET degradation activity in PET nanoparticles and films, and our proposed approach enabled efficient PET degradation to terephthalic acid monomers up to 95.5%. Our approach, which integrates a two-enzyme system with protein engineering, demonstrates the potential for enhancing the activity of emerging PET-degradation enzymes, which may possess unique attributes.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 19","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202500364","citationCount":"0","resultStr":"{\"title\":\"A Combination of Two-Enzyme System and Enzyme Engineering Improved the Activity of a New PET Hydrolase Identified from Soil Bacterial Genome\",\"authors\":\"Hideaki Mabashi-Asazuma, Makoto Hirai, Shigeru Sakurai, Keigo Ide, Masato Kogawa, Ai Matsushita, Masahito Hosokawa, Soichiro Tsuda\",\"doi\":\"10.1002/cctc.202500364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We here report a novel PET hydrolase originating from a soil microbial genome sequence. This enzyme, bbPET0069, exhibits characteristics resembling a cutinase-like Type I PET-degrading enzyme but lacks disulfide bonds. Notably, bbPET0069 displayed remarkable synergy with <i>Candida antarctica</i> lipase B (CALB), demonstrating rapid and efficient PET degradation. To improve the PET degradation activity of bbPET0069, we employed a 3D structural modeling to identify mutation sites around its substrate binding domain combined with a protein language model for effective mutation prediction. Through three initial rounds of directed evolution, we achieved a significant enhancement in PET degradation with CALB, resulting in a 12.6-fold increase compared to wild-type bbPET0069 without CALB. We confirmed its PET degradation activity in PET nanoparticles and films, and our proposed approach enabled efficient PET degradation to terephthalic acid monomers up to 95.5%. Our approach, which integrates a two-enzyme system with protein engineering, demonstrates the potential for enhancing the activity of emerging PET-degradation enzymes, which may possess unique attributes.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202500364\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500364\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500364","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Combination of Two-Enzyme System and Enzyme Engineering Improved the Activity of a New PET Hydrolase Identified from Soil Bacterial Genome
We here report a novel PET hydrolase originating from a soil microbial genome sequence. This enzyme, bbPET0069, exhibits characteristics resembling a cutinase-like Type I PET-degrading enzyme but lacks disulfide bonds. Notably, bbPET0069 displayed remarkable synergy with Candida antarctica lipase B (CALB), demonstrating rapid and efficient PET degradation. To improve the PET degradation activity of bbPET0069, we employed a 3D structural modeling to identify mutation sites around its substrate binding domain combined with a protein language model for effective mutation prediction. Through three initial rounds of directed evolution, we achieved a significant enhancement in PET degradation with CALB, resulting in a 12.6-fold increase compared to wild-type bbPET0069 without CALB. We confirmed its PET degradation activity in PET nanoparticles and films, and our proposed approach enabled efficient PET degradation to terephthalic acid monomers up to 95.5%. Our approach, which integrates a two-enzyme system with protein engineering, demonstrates the potential for enhancing the activity of emerging PET-degradation enzymes, which may possess unique attributes.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.