木基石墨烯复合电热膜的低压协同导热性能

IF 2.8 3区 化学 Q2 POLYMER SCIENCE
Tao Zhang, Xu Tang, Bo Guan, Chunmei Yang, Siman Zhou, Xiaoyu Feng, Mengjiao Shi, Wen Qu
{"title":"木基石墨烯复合电热膜的低压协同导热性能","authors":"Tao Zhang,&nbsp;Xu Tang,&nbsp;Bo Guan,&nbsp;Chunmei Yang,&nbsp;Siman Zhou,&nbsp;Xiaoyu Feng,&nbsp;Mengjiao Shi,&nbsp;Wen Qu","doi":"10.1002/app.57669","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To address the limitations of conventional low-voltage electric heaters in achieving high saturation temperatures and rapid electrothermal response, this study presents a high-performance composite film of graphene nanoplatelets (GNP)/multiwalled carbon nanotubes (MWCNT) with a three-dimensional conductive network, fabricated via a layer-by-layer coating and hot-pressing process, utilizing pretreated natural wood veneer with enhanced hydroxyl group exposure as a sustainable substrate. Thermochemical and microstructural analyses reveal that a 1:1 GNP/MWCNT mass ratio optimizes the synergistic effect, where MWCNT bridges GNP layers to establish a continuous conductive pathway, reducing interfacial resistance and enhancing thermal transport. The resultant composite film with four coating layers (thickness: ~120 μm) exhibits exceptional electrical conductivity (2000 S·m<sup>−1</sup>) and rapid Joule heating response (2 s), achieving a saturation temperature of 66.1°C–67.9°C under 4 V applied voltage. Cyclic stability tests confirm consistent performance over 3600 s at 4 V, with minimal temperature fluctuations. Furthermore, infrared thermography demonstrated uniform heat distribution (Δ<i>T</i> &lt; 3°C across the surface) and superior heating rates (66°C in 40 s) compared to traditional resistance wire films. This scalable approach offers potential for eco-friendly, high-efficiency electrothermal materials in decorative applications.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 43","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Voltage Synergistic Thermal Conductivity of Wood-Based Graphene Composite Electrothermal Films\",\"authors\":\"Tao Zhang,&nbsp;Xu Tang,&nbsp;Bo Guan,&nbsp;Chunmei Yang,&nbsp;Siman Zhou,&nbsp;Xiaoyu Feng,&nbsp;Mengjiao Shi,&nbsp;Wen Qu\",\"doi\":\"10.1002/app.57669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>To address the limitations of conventional low-voltage electric heaters in achieving high saturation temperatures and rapid electrothermal response, this study presents a high-performance composite film of graphene nanoplatelets (GNP)/multiwalled carbon nanotubes (MWCNT) with a three-dimensional conductive network, fabricated via a layer-by-layer coating and hot-pressing process, utilizing pretreated natural wood veneer with enhanced hydroxyl group exposure as a sustainable substrate. Thermochemical and microstructural analyses reveal that a 1:1 GNP/MWCNT mass ratio optimizes the synergistic effect, where MWCNT bridges GNP layers to establish a continuous conductive pathway, reducing interfacial resistance and enhancing thermal transport. The resultant composite film with four coating layers (thickness: ~120 μm) exhibits exceptional electrical conductivity (2000 S·m<sup>−1</sup>) and rapid Joule heating response (2 s), achieving a saturation temperature of 66.1°C–67.9°C under 4 V applied voltage. Cyclic stability tests confirm consistent performance over 3600 s at 4 V, with minimal temperature fluctuations. Furthermore, infrared thermography demonstrated uniform heat distribution (Δ<i>T</i> &lt; 3°C across the surface) and superior heating rates (66°C in 40 s) compared to traditional resistance wire films. This scalable approach offers potential for eco-friendly, high-efficiency electrothermal materials in decorative applications.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 43\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.57669\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.57669","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了解决传统低压电加热器在实现高饱和温度和快速电热响应方面的局限性,本研究提出了一种高性能的石墨烯纳米片(GNP)/多壁碳纳米管(MWCNT)复合薄膜,该薄膜具有三维导电网络,通过一层一层的涂层和热压工艺制备,利用预处理的天然木饰面增强羟基暴露作为可持续基材。热化学和微观结构分析表明,1:1的GNP/MWCNT质量比优化了协同效应,其中MWCNT桥接GNP层以建立连续的导电途径,降低了界面阻力并增强了热传递。复合膜具有4层(厚度:~120 μm),具有优异的导电性(2000 S·m−1)和快速的焦耳加热响应(2 S),在4 V电压下达到66.1℃- 67.9℃的饱和温度。循环稳定性测试确认在4v下3600秒内性能一致,温度波动最小。此外,红外热成像显示,与传统电阻丝薄膜相比,该薄膜的热分布均匀(ΔT < 3°C),加热速率高(40 s内加热66°C)。这种可扩展的方法为装饰应用中的环保、高效电热材料提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-Voltage Synergistic Thermal Conductivity of Wood-Based Graphene Composite Electrothermal Films

Low-Voltage Synergistic Thermal Conductivity of Wood-Based Graphene Composite Electrothermal Films

To address the limitations of conventional low-voltage electric heaters in achieving high saturation temperatures and rapid electrothermal response, this study presents a high-performance composite film of graphene nanoplatelets (GNP)/multiwalled carbon nanotubes (MWCNT) with a three-dimensional conductive network, fabricated via a layer-by-layer coating and hot-pressing process, utilizing pretreated natural wood veneer with enhanced hydroxyl group exposure as a sustainable substrate. Thermochemical and microstructural analyses reveal that a 1:1 GNP/MWCNT mass ratio optimizes the synergistic effect, where MWCNT bridges GNP layers to establish a continuous conductive pathway, reducing interfacial resistance and enhancing thermal transport. The resultant composite film with four coating layers (thickness: ~120 μm) exhibits exceptional electrical conductivity (2000 S·m−1) and rapid Joule heating response (2 s), achieving a saturation temperature of 66.1°C–67.9°C under 4 V applied voltage. Cyclic stability tests confirm consistent performance over 3600 s at 4 V, with minimal temperature fluctuations. Furthermore, infrared thermography demonstrated uniform heat distribution (ΔT < 3°C across the surface) and superior heating rates (66°C in 40 s) compared to traditional resistance wire films. This scalable approach offers potential for eco-friendly, high-efficiency electrothermal materials in decorative applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信