Guan-Rong Huang, Chi-Huan Tung, Weijian Hua, Yifei Jin, Lionel Porcar, Yuya Shinohara, Christoph U. Wildgruber, Changwoo Do, Wei-Ren Chen
{"title":"用中心矩展开分解二维小角中子散射数据","authors":"Guan-Rong Huang, Chi-Huan Tung, Weijian Hua, Yifei Jin, Lionel Porcar, Yuya Shinohara, Christoph U. Wildgruber, Changwoo Do, Wei-Ren Chen","doi":"10.1107/S1600576725006582","DOIUrl":null,"url":null,"abstract":"<p>Resolution smearing is a critical challenge in the quantitative analysis of two-dimensional small-angle neutron scattering (SANS) data, particularly in studies of soft-matter flow and deformation using SANS. We present a central moment expansion technique to address smearing in anisotropic scattering spectra, offering a model-free desmearing methodology. By accounting for directional variations in resolution smearing and enhancing computational efficiency, this approach reconstructs desmeared intensity distributions from smeared experimental data. Computational benchmarks using interacting hard-sphere fluids and Gaussian chain models validate the accuracy of the method, while simulated noise analyses confirm its robustness under experimental conditions. Experimental validation using rheological SANS data from shear-induced micellar structures demonstrates the practicality and effectiveness of the proposed algorithm. The desmearing technique provides a powerful tool for advancing the quantitative analysis of anisotropic scattering patterns, enabling precise insights into the interplay between material microstructure and macroscopic flow behavior.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"58 5","pages":"1542-1552"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desmearing two-dimensional small-angle neutron scattering data by central moment expansions\",\"authors\":\"Guan-Rong Huang, Chi-Huan Tung, Weijian Hua, Yifei Jin, Lionel Porcar, Yuya Shinohara, Christoph U. Wildgruber, Changwoo Do, Wei-Ren Chen\",\"doi\":\"10.1107/S1600576725006582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Resolution smearing is a critical challenge in the quantitative analysis of two-dimensional small-angle neutron scattering (SANS) data, particularly in studies of soft-matter flow and deformation using SANS. We present a central moment expansion technique to address smearing in anisotropic scattering spectra, offering a model-free desmearing methodology. By accounting for directional variations in resolution smearing and enhancing computational efficiency, this approach reconstructs desmeared intensity distributions from smeared experimental data. Computational benchmarks using interacting hard-sphere fluids and Gaussian chain models validate the accuracy of the method, while simulated noise analyses confirm its robustness under experimental conditions. Experimental validation using rheological SANS data from shear-induced micellar structures demonstrates the practicality and effectiveness of the proposed algorithm. The desmearing technique provides a powerful tool for advancing the quantitative analysis of anisotropic scattering patterns, enabling precise insights into the interplay between material microstructure and macroscopic flow behavior.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 5\",\"pages\":\"1542-1552\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576725006582\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576725006582","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Desmearing two-dimensional small-angle neutron scattering data by central moment expansions
Resolution smearing is a critical challenge in the quantitative analysis of two-dimensional small-angle neutron scattering (SANS) data, particularly in studies of soft-matter flow and deformation using SANS. We present a central moment expansion technique to address smearing in anisotropic scattering spectra, offering a model-free desmearing methodology. By accounting for directional variations in resolution smearing and enhancing computational efficiency, this approach reconstructs desmeared intensity distributions from smeared experimental data. Computational benchmarks using interacting hard-sphere fluids and Gaussian chain models validate the accuracy of the method, while simulated noise analyses confirm its robustness under experimental conditions. Experimental validation using rheological SANS data from shear-induced micellar structures demonstrates the practicality and effectiveness of the proposed algorithm. The desmearing technique provides a powerful tool for advancing the quantitative analysis of anisotropic scattering patterns, enabling precise insights into the interplay between material microstructure and macroscopic flow behavior.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.