聚合物的空化磨损

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Yu. N. Tsvetkov, Ya. O. Fiaktistov, R. N. Larin
{"title":"聚合物的空化磨损","authors":"Yu. N. Tsvetkov,&nbsp;Ya. O. Fiaktistov,&nbsp;R. N. Larin","doi":"10.3103/S1068366625700333","DOIUrl":null,"url":null,"abstract":"<p>Cavitation wear tests on six polymers belonging to different classes: polytetrafluoroethylene, low-pressure polyethylene; polymethyl methacrylate, block polyamide (caprolon), polyurethane, and epoxy compound K-153 have been performed. The experiments on an ultrasonic magnetostrictive vibrator in soft fresh water at a temperature of 20 ± 3°C have been carried out. The frequency and amplitude of oscillations of the vibrator concentrator end were 22 kHz and 28 μm, respectively. The samples had a cylindrical shape, the end surfaces of which, subject to testing, were ground and polished using the same technology for all polymers. Before the tests, the density, sound velocity in polymers, and Shore hardness (type <i>D</i>) have been measured. During the tests, the mass loss of the samples and the surface roughness have been measured, and the dependence of the mass loss and the arithmetic mean deviation of the surface profile on the duration of the cavitation effect has been plotted. The wear of all polymers occurred with an incubation period. A viscous–brittle transition has been observed in the dependences of the incubation period duration and the wear rate on the Shore hardness, while in the viscous fracture region, the effect of the polymer hardness on their cavitation wear resistance is opposite to that in the brittle fracture region. It has been found that both in the viscous and brittle fracture regions, the cavitation wear resistance of the polymer decreases with increasing acoustic resistance. It has been concluded that in order to ensure the greatest cavitation wear resistance, it is necessary to select polymers with a hardness value that would ensure viscous–brittle fracture of the polymer at Shore hardness in the range of 65–70.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"46 2","pages":"112 - 120"},"PeriodicalIF":0.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cavitation Wear of Polymers\",\"authors\":\"Yu. N. Tsvetkov,&nbsp;Ya. O. Fiaktistov,&nbsp;R. N. Larin\",\"doi\":\"10.3103/S1068366625700333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cavitation wear tests on six polymers belonging to different classes: polytetrafluoroethylene, low-pressure polyethylene; polymethyl methacrylate, block polyamide (caprolon), polyurethane, and epoxy compound K-153 have been performed. The experiments on an ultrasonic magnetostrictive vibrator in soft fresh water at a temperature of 20 ± 3°C have been carried out. The frequency and amplitude of oscillations of the vibrator concentrator end were 22 kHz and 28 μm, respectively. The samples had a cylindrical shape, the end surfaces of which, subject to testing, were ground and polished using the same technology for all polymers. Before the tests, the density, sound velocity in polymers, and Shore hardness (type <i>D</i>) have been measured. During the tests, the mass loss of the samples and the surface roughness have been measured, and the dependence of the mass loss and the arithmetic mean deviation of the surface profile on the duration of the cavitation effect has been plotted. The wear of all polymers occurred with an incubation period. A viscous–brittle transition has been observed in the dependences of the incubation period duration and the wear rate on the Shore hardness, while in the viscous fracture region, the effect of the polymer hardness on their cavitation wear resistance is opposite to that in the brittle fracture region. It has been found that both in the viscous and brittle fracture regions, the cavitation wear resistance of the polymer decreases with increasing acoustic resistance. It has been concluded that in order to ensure the greatest cavitation wear resistance, it is necessary to select polymers with a hardness value that would ensure viscous–brittle fracture of the polymer at Shore hardness in the range of 65–70.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":\"46 2\",\"pages\":\"112 - 120\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366625700333\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366625700333","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚四氟乙烯、低压聚乙烯六种不同类别聚合物的空化磨损试验;聚甲基丙烯酸甲酯,嵌段聚酰胺(己内酰胺),聚氨酯和环氧化合物K-153进行。在温度为20±3℃的软淡水中进行了超声磁致伸缩振动器的实验。振动器集中器端振荡频率为22 kHz,振幅为28 μm。样品呈圆柱形,其端面,在测试中,使用相同的技术对所有聚合物进行研磨和抛光。在测试之前,测量了聚合物的密度、声速和邵氏硬度(D型)。在试验过程中,测量了样品的质量损失和表面粗糙度,并绘制了质量损失和表面轮廓的算术平均偏差与空化效应持续时间的关系图。所有聚合物的磨损都有一个潜伏期。在邵氏硬度的潜伏期和磨损速率的依赖性中观察到粘脆性转变,而在粘性断裂区,聚合物硬度对其空化耐磨性的影响与脆性断裂区相反。研究发现,无论在粘性断裂区还是脆性断裂区,聚合物的空化耐磨性都随着声阻的增加而降低。结果表明,为了保证最大的抗空化磨损性能,有必要选择硬度值在65-70邵氏硬度范围内保证聚合物粘脆断裂的聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cavitation Wear of Polymers

Cavitation Wear of Polymers

Cavitation wear tests on six polymers belonging to different classes: polytetrafluoroethylene, low-pressure polyethylene; polymethyl methacrylate, block polyamide (caprolon), polyurethane, and epoxy compound K-153 have been performed. The experiments on an ultrasonic magnetostrictive vibrator in soft fresh water at a temperature of 20 ± 3°C have been carried out. The frequency and amplitude of oscillations of the vibrator concentrator end were 22 kHz and 28 μm, respectively. The samples had a cylindrical shape, the end surfaces of which, subject to testing, were ground and polished using the same technology for all polymers. Before the tests, the density, sound velocity in polymers, and Shore hardness (type D) have been measured. During the tests, the mass loss of the samples and the surface roughness have been measured, and the dependence of the mass loss and the arithmetic mean deviation of the surface profile on the duration of the cavitation effect has been plotted. The wear of all polymers occurred with an incubation period. A viscous–brittle transition has been observed in the dependences of the incubation period duration and the wear rate on the Shore hardness, while in the viscous fracture region, the effect of the polymer hardness on their cavitation wear resistance is opposite to that in the brittle fracture region. It has been found that both in the viscous and brittle fracture regions, the cavitation wear resistance of the polymer decreases with increasing acoustic resistance. It has been concluded that in order to ensure the greatest cavitation wear resistance, it is necessary to select polymers with a hardness value that would ensure viscous–brittle fracture of the polymer at Shore hardness in the range of 65–70.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信