焊缝混合零件车削摩擦过程的摩擦应变和热电特性

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL
E. V. Fominov, M. M. Aliev, K. G. Shuchev, T. V. Lavrenova
{"title":"焊缝混合零件车削摩擦过程的摩擦应变和热电特性","authors":"E. V. Fominov,&nbsp;M. M. Aliev,&nbsp;K. G. Shuchev,&nbsp;T. V. Lavrenova","doi":"10.3103/S1068366625700400","DOIUrl":null,"url":null,"abstract":"<p>The tribological and thermoelectric characteristics of the turning process of a hybrid part made of 09G2S steel, the surface of which contains a weld, have been estimated using T15K6 hard alloy plates at various cutting speeds. In the used model, the rake face of the lathe cutter, which contacts chips of different composition at the stage of cutting into the weld, has been presented as two parallel heavily loaded tribosystems with variable geometric parameters of contact, which differ in tribostrain indicators and surface temperature. Based on the graphical model of the removed non-uniform allowance, its composition and geometric characteristics of fragments for each processed material have been established. Based on the obtained dimensions of the hybrid allowance elements, the maximal contact temperatures have been calculated for each tribosystem at various cutting speeds. The cutting speed that ensures a minimal difference in surface temperatures in different areas of the front face of the plates has been determined. It has been established that the turning speed, at which, according to the calculated data, more uniform heating of the front face occurs, is characterized by a decrease in fluctuations of the thermo-EMF arising at the stage of cutting the plate into the weld. Exceeding this speed leads to an increase in the negative influence of thermoelectric effects, which contribute to the intensification of wear of cutting plates. The presented research results, in combination with other technological factors for selecting processing modes, can be used to assign permissible turning speeds for welded areas on hybrid parts.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"46 2","pages":"86 - 91"},"PeriodicalIF":0.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribostrain and Thermoelectric Characteristics of the Friction Process during Turning of a Hybrid Part with a Welded Seam\",\"authors\":\"E. V. Fominov,&nbsp;M. M. Aliev,&nbsp;K. G. Shuchev,&nbsp;T. V. Lavrenova\",\"doi\":\"10.3103/S1068366625700400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tribological and thermoelectric characteristics of the turning process of a hybrid part made of 09G2S steel, the surface of which contains a weld, have been estimated using T15K6 hard alloy plates at various cutting speeds. In the used model, the rake face of the lathe cutter, which contacts chips of different composition at the stage of cutting into the weld, has been presented as two parallel heavily loaded tribosystems with variable geometric parameters of contact, which differ in tribostrain indicators and surface temperature. Based on the graphical model of the removed non-uniform allowance, its composition and geometric characteristics of fragments for each processed material have been established. Based on the obtained dimensions of the hybrid allowance elements, the maximal contact temperatures have been calculated for each tribosystem at various cutting speeds. The cutting speed that ensures a minimal difference in surface temperatures in different areas of the front face of the plates has been determined. It has been established that the turning speed, at which, according to the calculated data, more uniform heating of the front face occurs, is characterized by a decrease in fluctuations of the thermo-EMF arising at the stage of cutting the plate into the weld. Exceeding this speed leads to an increase in the negative influence of thermoelectric effects, which contribute to the intensification of wear of cutting plates. The presented research results, in combination with other technological factors for selecting processing modes, can be used to assign permissible turning speeds for welded areas on hybrid parts.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":\"46 2\",\"pages\":\"86 - 91\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366625700400\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366625700400","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用T15K6硬质合金板,在不同切削速度下,研究了09G2S钢混合零件的车削过程的摩擦学和热电特性。在该模型中,在切割焊缝阶段与不同成分的切屑接触的车床刀具前刀面被描述为两个平行的重载摩擦系统,这些系统具有不同的摩擦应变指标和表面温度的可变接触几何参数。基于去除的非均匀余量的图形模型,建立了各加工材料的碎片组成和几何特征。根据得到的混合余量元件的尺寸,计算了不同切削速度下每个摩擦系统的最大接触温度。切割速度,确保在不同区域的表面温度差异最小的板的前面已经确定。根据计算数据确定,在车削速度下,前表面的加热更加均匀,其特征是切割到焊缝阶段产生的热电动势波动减小。超过这个速度会导致热电效应的负面影响增加,从而加剧切割板的磨损。研究结果结合其他选择加工方式的技术因素,可用于确定混合动力零件焊接区域的允许转弯速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tribostrain and Thermoelectric Characteristics of the Friction Process during Turning of a Hybrid Part with a Welded Seam

Tribostrain and Thermoelectric Characteristics of the Friction Process during Turning of a Hybrid Part with a Welded Seam

The tribological and thermoelectric characteristics of the turning process of a hybrid part made of 09G2S steel, the surface of which contains a weld, have been estimated using T15K6 hard alloy plates at various cutting speeds. In the used model, the rake face of the lathe cutter, which contacts chips of different composition at the stage of cutting into the weld, has been presented as two parallel heavily loaded tribosystems with variable geometric parameters of contact, which differ in tribostrain indicators and surface temperature. Based on the graphical model of the removed non-uniform allowance, its composition and geometric characteristics of fragments for each processed material have been established. Based on the obtained dimensions of the hybrid allowance elements, the maximal contact temperatures have been calculated for each tribosystem at various cutting speeds. The cutting speed that ensures a minimal difference in surface temperatures in different areas of the front face of the plates has been determined. It has been established that the turning speed, at which, according to the calculated data, more uniform heating of the front face occurs, is characterized by a decrease in fluctuations of the thermo-EMF arising at the stage of cutting the plate into the weld. Exceeding this speed leads to an increase in the negative influence of thermoelectric effects, which contribute to the intensification of wear of cutting plates. The presented research results, in combination with other technological factors for selecting processing modes, can be used to assign permissible turning speeds for welded areas on hybrid parts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信