调整多孔α-Fe2O3纳米片的微纳米结构,实现高效氢检测

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Li Yin , Tengbiao Yu , Wenpei Shi , Kang Zhao , Jinrui Liu , Qi Qin , Bin Zhao , Bingbing Fan , Deliang Chen , Rui Zhang
{"title":"调整多孔α-Fe2O3纳米片的微纳米结构,实现高效氢检测","authors":"Li Yin ,&nbsp;Tengbiao Yu ,&nbsp;Wenpei Shi ,&nbsp;Kang Zhao ,&nbsp;Jinrui Liu ,&nbsp;Qi Qin ,&nbsp;Bin Zhao ,&nbsp;Bingbing Fan ,&nbsp;Deliang Chen ,&nbsp;Rui Zhang","doi":"10.1016/j.ijhydene.2025.151920","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen(H<sub>2</sub>), a clean and sustainable energy carrier of high energy density, is key to the low-carbon energy transition. Due to its colorless, odorless and highly flammable properties, safe and efficient H<sub>2</sub> leakage detection is imperative to prevent explosions. Porous α-Fe<sub>2</sub>O<sub>3</sub> nanosheets (NSs) were synthesized via microwave-assisted co-precipitation followed by sintering, using graphene oxide as the template. The resulting α-Fe<sub>2</sub>O<sub>3</sub> NSs exhibited a hierarchical structure assembled from sub-level α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles at 12–43 nm with a mean diameter of 26 nm. Numerous oxygen vacancy defects were formed on the particle surfaces, endowing the α-Fe<sub>2</sub>O<sub>3</sub> NSs with outstanding H<sub>2</sub>-sensing performance. At 150 °C, the α-Fe<sub>2</sub>O<sub>3</sub> sensor showed ultrahigh sensitivity toward H<sub>2</sub>, with response values of 63.7 and 17.9 for 50 ppm and 10 ppm H<sub>2</sub>, respectively. Furthermore, the porous α-Fe<sub>2</sub>O<sub>3</sub> sensor presented excellent selectivity, maintaining responses below 3 for other tested gases at 100 ppm. Compared with other α-Fe<sub>2</sub>O<sub>3</sub>-based sensors, the porous α-Fe<sub>2</sub>O<sub>3</sub> NSs sensor demonstrates enhanced sensitivity, a lower detection limit, and a reduced optimal working temperature. The ultra-sensitive H<sub>2</sub>-sensing property of the α-Fe<sub>2</sub>O<sub>3</sub> NSs is attributed to the porous architecture, fine-grained substructures and massive oxygen vacancies. These findings highlight the potential of porous α-Fe<sub>2</sub>O<sub>3</sub> NSs for high-performance hydrogen detection applications.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"184 ","pages":"Article 151920"},"PeriodicalIF":8.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the micro- and nano-structure of porous α-Fe2O3 nanosheets for high-efficient hydrogen detection\",\"authors\":\"Li Yin ,&nbsp;Tengbiao Yu ,&nbsp;Wenpei Shi ,&nbsp;Kang Zhao ,&nbsp;Jinrui Liu ,&nbsp;Qi Qin ,&nbsp;Bin Zhao ,&nbsp;Bingbing Fan ,&nbsp;Deliang Chen ,&nbsp;Rui Zhang\",\"doi\":\"10.1016/j.ijhydene.2025.151920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen(H<sub>2</sub>), a clean and sustainable energy carrier of high energy density, is key to the low-carbon energy transition. Due to its colorless, odorless and highly flammable properties, safe and efficient H<sub>2</sub> leakage detection is imperative to prevent explosions. Porous α-Fe<sub>2</sub>O<sub>3</sub> nanosheets (NSs) were synthesized via microwave-assisted co-precipitation followed by sintering, using graphene oxide as the template. The resulting α-Fe<sub>2</sub>O<sub>3</sub> NSs exhibited a hierarchical structure assembled from sub-level α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles at 12–43 nm with a mean diameter of 26 nm. Numerous oxygen vacancy defects were formed on the particle surfaces, endowing the α-Fe<sub>2</sub>O<sub>3</sub> NSs with outstanding H<sub>2</sub>-sensing performance. At 150 °C, the α-Fe<sub>2</sub>O<sub>3</sub> sensor showed ultrahigh sensitivity toward H<sub>2</sub>, with response values of 63.7 and 17.9 for 50 ppm and 10 ppm H<sub>2</sub>, respectively. Furthermore, the porous α-Fe<sub>2</sub>O<sub>3</sub> sensor presented excellent selectivity, maintaining responses below 3 for other tested gases at 100 ppm. Compared with other α-Fe<sub>2</sub>O<sub>3</sub>-based sensors, the porous α-Fe<sub>2</sub>O<sub>3</sub> NSs sensor demonstrates enhanced sensitivity, a lower detection limit, and a reduced optimal working temperature. The ultra-sensitive H<sub>2</sub>-sensing property of the α-Fe<sub>2</sub>O<sub>3</sub> NSs is attributed to the porous architecture, fine-grained substructures and massive oxygen vacancies. These findings highlight the potential of porous α-Fe<sub>2</sub>O<sub>3</sub> NSs for high-performance hydrogen detection applications.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"184 \",\"pages\":\"Article 151920\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925049237\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925049237","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢(H2)是一种清洁、高能量密度的可持续能源载体,是实现低碳能源转型的关键。由于其无色、无味和高度易燃的特性,安全、高效的氢气泄漏检测是防止爆炸的必要条件。以氧化石墨烯为模板,采用微波辅助共沉淀法烧结制备了多孔α-Fe2O3纳米片。制备的α-Fe2O3纳米粒子具有12 ~ 43 nm的分层结构,平均直径为26 nm。粒子表面形成了大量的氧空位缺陷,使α-Fe2O3纳米粒子具有优异的h2传感性能。在150℃时,α-Fe2O3传感器对H2表现出超高的灵敏度,对50 ppm和10 ppm H2的响应值分别为63.7和17.9。此外,多孔α-Fe2O3传感器表现出优异的选择性,对其他测试气体在100 ppm下保持低于3的响应。与其他基于α-Fe2O3的传感器相比,多孔α-Fe2O3纳米传感器具有更高的灵敏度、更低的检测限和更低的最佳工作温度。α-Fe2O3纳米碳化硅具有超灵敏的h2传感性能,主要归因于多孔结构、细粒亚结构和大量的氧空位。这些发现突出了多孔α-Fe2O3纳米材料在高性能氢探测应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning the micro- and nano-structure of porous α-Fe2O3 nanosheets for high-efficient hydrogen detection

Tuning the micro- and nano-structure of porous α-Fe2O3 nanosheets for high-efficient hydrogen detection
Hydrogen(H2), a clean and sustainable energy carrier of high energy density, is key to the low-carbon energy transition. Due to its colorless, odorless and highly flammable properties, safe and efficient H2 leakage detection is imperative to prevent explosions. Porous α-Fe2O3 nanosheets (NSs) were synthesized via microwave-assisted co-precipitation followed by sintering, using graphene oxide as the template. The resulting α-Fe2O3 NSs exhibited a hierarchical structure assembled from sub-level α-Fe2O3 nanoparticles at 12–43 nm with a mean diameter of 26 nm. Numerous oxygen vacancy defects were formed on the particle surfaces, endowing the α-Fe2O3 NSs with outstanding H2-sensing performance. At 150 °C, the α-Fe2O3 sensor showed ultrahigh sensitivity toward H2, with response values of 63.7 and 17.9 for 50 ppm and 10 ppm H2, respectively. Furthermore, the porous α-Fe2O3 sensor presented excellent selectivity, maintaining responses below 3 for other tested gases at 100 ppm. Compared with other α-Fe2O3-based sensors, the porous α-Fe2O3 NSs sensor demonstrates enhanced sensitivity, a lower detection limit, and a reduced optimal working temperature. The ultra-sensitive H2-sensing property of the α-Fe2O3 NSs is attributed to the porous architecture, fine-grained substructures and massive oxygen vacancies. These findings highlight the potential of porous α-Fe2O3 NSs for high-performance hydrogen detection applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信