碳纳米管中嵌入硫酸盐取代Na3V2(PO4)3纳米点的超快钠离子存储

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Naohisa Okita, Keisuke Matsumura, Yuta Harada, Masahiro Fukuyama, Mai Tomita, Masaya Nakagawa, Yuto Iwasaki, Akari Ukai, Kangkang Ge, Etsuro Iwama, Wako Naoi, Patrick Rozier, Patrice Simon, Katsuhiko Naoi
{"title":"碳纳米管中嵌入硫酸盐取代Na3V2(PO4)3纳米点的超快钠离子存储","authors":"Naohisa Okita, Keisuke Matsumura, Yuta Harada, Masahiro Fukuyama, Mai Tomita, Masaya Nakagawa, Yuto Iwasaki, Akari Ukai, Kangkang Ge, Etsuro Iwama, Wako Naoi, Patrick Rozier, Patrice Simon, Katsuhiko Naoi","doi":"10.1021/acs.nanolett.5c03272","DOIUrl":null,"url":null,"abstract":"Polyanion-substituted sodium vanadium phosphate (Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, NVP) derivatives, including SO<sub>4</sub>, BO<sub>3</sub>, WO<sub>4</sub>, and SiO<sub>4</sub> substitutions, were systematically synthesized and impregnated with a nanocarbon network via ultracentrifugation. Among them, nanosized (5–30 nm), highly crystalline, and well-dispersed sulfate-substituted NVP (NVPS) nanodots were directly nucleated onto multiwalled carbon nanotubes, enabling ultrafast electrochemical kinetics. This nanoscale architecture delivered exceptional rate capability, achieving 97 mAh g<sup>–1</sup> at 1000C (3.6 s discharge), corresponding to 83% of the theoretical capacity, outperforming conventional NVP. The electrochemical kinetics analysis using a cavity microelectrode revealed reduced polarization, enhanced capacitive charge storage, and rapid sodium ion diffusion during intercalation/deintercalation, facilitated by the conformal interface between NVPS and MWCNT, possibly by sulfate-induced surface modifications. These findings establish polyanion substitution and ultracentrifugation-assisted materials processing as a transformative strategy for overcoming intrinsic transport limitations in NASICON-type phosphates, positioning NVPS as a benchmark material for next-generation high-power sodium-ion batteries and hybrid capacitors.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"9 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfate-Substituted Na3V2(PO4)3 Nanodots Embedded in Carbon Nanotubes for Ultrafast Sodium-Ion Storage\",\"authors\":\"Naohisa Okita, Keisuke Matsumura, Yuta Harada, Masahiro Fukuyama, Mai Tomita, Masaya Nakagawa, Yuto Iwasaki, Akari Ukai, Kangkang Ge, Etsuro Iwama, Wako Naoi, Patrick Rozier, Patrice Simon, Katsuhiko Naoi\",\"doi\":\"10.1021/acs.nanolett.5c03272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyanion-substituted sodium vanadium phosphate (Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, NVP) derivatives, including SO<sub>4</sub>, BO<sub>3</sub>, WO<sub>4</sub>, and SiO<sub>4</sub> substitutions, were systematically synthesized and impregnated with a nanocarbon network via ultracentrifugation. Among them, nanosized (5–30 nm), highly crystalline, and well-dispersed sulfate-substituted NVP (NVPS) nanodots were directly nucleated onto multiwalled carbon nanotubes, enabling ultrafast electrochemical kinetics. This nanoscale architecture delivered exceptional rate capability, achieving 97 mAh g<sup>–1</sup> at 1000C (3.6 s discharge), corresponding to 83% of the theoretical capacity, outperforming conventional NVP. The electrochemical kinetics analysis using a cavity microelectrode revealed reduced polarization, enhanced capacitive charge storage, and rapid sodium ion diffusion during intercalation/deintercalation, facilitated by the conformal interface between NVPS and MWCNT, possibly by sulfate-induced surface modifications. These findings establish polyanion substitution and ultracentrifugation-assisted materials processing as a transformative strategy for overcoming intrinsic transport limitations in NASICON-type phosphates, positioning NVPS as a benchmark material for next-generation high-power sodium-ion batteries and hybrid capacitors.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c03272\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c03272","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

系统合成了聚阴离子取代磷酸钒钠(Na3V2(PO4)3, NVP)衍生物,包括SO4, BO3, WO4和SiO4取代,并通过超离心浸渍纳米碳网络。其中,纳米尺寸(5-30 nm)、高结晶性、分散良好的硫酸盐取代NVP (NVPS)纳米点被直接成核到多壁碳纳米管上,实现了超快的电化学动力学。这种纳米级结构提供了卓越的倍率能力,在1000C (3.6 s放电)下达到97 mAh g-1,相当于理论容量的83%,优于传统的NVP。利用空腔微电极进行的电化学动力学分析表明,NVPS和MWCNT之间的保形界面可能是硫酸盐诱导的表面修饰,在插插/脱插过程中,NVPS和MWCNT之间的保形界面促进了极化降低、电容电荷存储增强和钠离子快速扩散。这些发现确立了聚阴离子取代和超离心辅助材料加工是克服nasicon型磷酸盐固有输运限制的变革策略,将NVPS定位为下一代高功率钠离子电池和混合电容器的基准材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sulfate-Substituted Na3V2(PO4)3 Nanodots Embedded in Carbon Nanotubes for Ultrafast Sodium-Ion Storage

Sulfate-Substituted Na3V2(PO4)3 Nanodots Embedded in Carbon Nanotubes for Ultrafast Sodium-Ion Storage
Polyanion-substituted sodium vanadium phosphate (Na3V2(PO4)3, NVP) derivatives, including SO4, BO3, WO4, and SiO4 substitutions, were systematically synthesized and impregnated with a nanocarbon network via ultracentrifugation. Among them, nanosized (5–30 nm), highly crystalline, and well-dispersed sulfate-substituted NVP (NVPS) nanodots were directly nucleated onto multiwalled carbon nanotubes, enabling ultrafast electrochemical kinetics. This nanoscale architecture delivered exceptional rate capability, achieving 97 mAh g–1 at 1000C (3.6 s discharge), corresponding to 83% of the theoretical capacity, outperforming conventional NVP. The electrochemical kinetics analysis using a cavity microelectrode revealed reduced polarization, enhanced capacitive charge storage, and rapid sodium ion diffusion during intercalation/deintercalation, facilitated by the conformal interface between NVPS and MWCNT, possibly by sulfate-induced surface modifications. These findings establish polyanion substitution and ultracentrifugation-assisted materials processing as a transformative strategy for overcoming intrinsic transport limitations in NASICON-type phosphates, positioning NVPS as a benchmark material for next-generation high-power sodium-ion batteries and hybrid capacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信