预测氢键介导的纳米粒子相互作用的表面键合模型

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Lingzhi Li,  and , Zhaochuan Fan*, 
{"title":"预测氢键介导的纳米粒子相互作用的表面键合模型","authors":"Lingzhi Li,&nbsp; and ,&nbsp;Zhaochuan Fan*,&nbsp;","doi":"10.1021/acs.jpclett.5c02757","DOIUrl":null,"url":null,"abstract":"<p >Surface ligands leveraging dynamic hydrogen bonding offer promising strategies for nanoparticle assembly, yet mechanistic understanding remains limited. Here, we investigate hydrogen bond dynamics between diaminopyridine (DAP) and thymine (Thy) ligands on Au nanoparticles using molecular dynamics simulations. Results reveal a kinetic lag of hundreds of nanoseconds for hydrogen bond equilibration, with hydrogen bond formation probability and average bonding energies linearly inversely proportional to supramolecular outer surface density. These linear correlations enable the development of a parameter-resolved Surface Bonding Model (SBM) that quantitatively predicts interparticle interaction strengths in solution. SBM facilitates rapid evaluation of interaction landscapes across multivariate parameter spaces and provides key insights into the precise control of nanocomposite assembly.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 41","pages":"10669–10677"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Surface Bonding Model for Predicting Hydrogen Bond-Mediated Nanoparticle Interactions\",\"authors\":\"Lingzhi Li,&nbsp; and ,&nbsp;Zhaochuan Fan*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Surface ligands leveraging dynamic hydrogen bonding offer promising strategies for nanoparticle assembly, yet mechanistic understanding remains limited. Here, we investigate hydrogen bond dynamics between diaminopyridine (DAP) and thymine (Thy) ligands on Au nanoparticles using molecular dynamics simulations. Results reveal a kinetic lag of hundreds of nanoseconds for hydrogen bond equilibration, with hydrogen bond formation probability and average bonding energies linearly inversely proportional to supramolecular outer surface density. These linear correlations enable the development of a parameter-resolved Surface Bonding Model (SBM) that quantitatively predicts interparticle interaction strengths in solution. SBM facilitates rapid evaluation of interaction landscapes across multivariate parameter spaces and provides key insights into the precise control of nanocomposite assembly.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 41\",\"pages\":\"10669–10677\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02757\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02757","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用动态氢键的表面配体为纳米颗粒组装提供了有前途的策略,但对其机理的理解仍然有限。在这里,我们利用分子动力学模拟研究了金纳米粒子上二氨基吡啶(DAP)和胸腺嘧啶(Thy)配体之间的氢键动力学。结果表明,氢键平衡存在数百纳秒的动力学滞后,氢键形成概率和平均键能与超分子外表面密度成线性反比。这些线性相关性使参数分辨表面键合模型(SBM)的发展能够定量预测溶液中粒子间相互作用的强度。SBM促进了跨多元参数空间的相互作用景观的快速评估,并为纳米复合材料组装的精确控制提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Surface Bonding Model for Predicting Hydrogen Bond-Mediated Nanoparticle Interactions

A Surface Bonding Model for Predicting Hydrogen Bond-Mediated Nanoparticle Interactions

A Surface Bonding Model for Predicting Hydrogen Bond-Mediated Nanoparticle Interactions

Surface ligands leveraging dynamic hydrogen bonding offer promising strategies for nanoparticle assembly, yet mechanistic understanding remains limited. Here, we investigate hydrogen bond dynamics between diaminopyridine (DAP) and thymine (Thy) ligands on Au nanoparticles using molecular dynamics simulations. Results reveal a kinetic lag of hundreds of nanoseconds for hydrogen bond equilibration, with hydrogen bond formation probability and average bonding energies linearly inversely proportional to supramolecular outer surface density. These linear correlations enable the development of a parameter-resolved Surface Bonding Model (SBM) that quantitatively predicts interparticle interaction strengths in solution. SBM facilitates rapid evaluation of interaction landscapes across multivariate parameter spaces and provides key insights into the precise control of nanocomposite assembly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信