分子洞察二氧化碳聚类:拓扑结构和驱动力从旋转研究

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Junhua Chen, , , Hao Wang, , , Jens-Uwe Grabow, , and , Qian Gou*, 
{"title":"分子洞察二氧化碳聚类:拓扑结构和驱动力从旋转研究","authors":"Junhua Chen,&nbsp;, ,&nbsp;Hao Wang,&nbsp;, ,&nbsp;Jens-Uwe Grabow,&nbsp;, and ,&nbsp;Qian Gou*,&nbsp;","doi":"10.1021/acs.jpclett.5c02398","DOIUrl":null,"url":null,"abstract":"<p >The continuous rise in atmospheric CO<sub>2</sub> levels, primarily driven by anthropogenic emissions, poses a significant challenge due to its central role in global warming. Carbon capture strategies are pivotal for mitigating these impacts, yet their effectiveness critically hinges on a molecular-level understanding of CO<sub>2</sub> interactions and aggregation behaviors. This Perspective surveys recent advances in rotational spectroscopic studies of CO<sub>2</sub> aggregation, spanning from simple dimers and trimers to subnanometer-scale clusters formed with diverse partner molecules. These investigations uncover the intricate network of noncovalent interactions─particularly tetrel and hydrogen bonding, that governs CO<sub>2</sub> aggregation and solvation, especially in supercritical CO<sub>2</sub> environments. By bridging the gap between isolated molecular behavior and condensed-phase phenomena, this Perspective highlights the potential of rotational spectroscopy as a tool to guide the rational design of high-capacity CO<sub>2</sub> capture materials and optimize carbon capture and utilization processes.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 41","pages":"10685–10694"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Insights into CO2 Clustering: Topologies and Driving Forces from Rotational Studies\",\"authors\":\"Junhua Chen,&nbsp;, ,&nbsp;Hao Wang,&nbsp;, ,&nbsp;Jens-Uwe Grabow,&nbsp;, and ,&nbsp;Qian Gou*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The continuous rise in atmospheric CO<sub>2</sub> levels, primarily driven by anthropogenic emissions, poses a significant challenge due to its central role in global warming. Carbon capture strategies are pivotal for mitigating these impacts, yet their effectiveness critically hinges on a molecular-level understanding of CO<sub>2</sub> interactions and aggregation behaviors. This Perspective surveys recent advances in rotational spectroscopic studies of CO<sub>2</sub> aggregation, spanning from simple dimers and trimers to subnanometer-scale clusters formed with diverse partner molecules. These investigations uncover the intricate network of noncovalent interactions─particularly tetrel and hydrogen bonding, that governs CO<sub>2</sub> aggregation and solvation, especially in supercritical CO<sub>2</sub> environments. By bridging the gap between isolated molecular behavior and condensed-phase phenomena, this Perspective highlights the potential of rotational spectroscopy as a tool to guide the rational design of high-capacity CO<sub>2</sub> capture materials and optimize carbon capture and utilization processes.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 41\",\"pages\":\"10685–10694\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02398\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02398","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

大气中二氧化碳水平的持续上升,主要是由人为排放驱动的,由于其在全球变暖中的核心作用,构成了重大挑战。碳捕获策略是减轻这些影响的关键,但其有效性关键取决于对二氧化碳相互作用和聚集行为的分子水平的理解。本展望综述了二氧化碳聚集的旋转光谱研究的最新进展,从简单的二聚体和三聚体到由不同的伙伴分子形成的亚纳米级簇。这些研究揭示了复杂的非共价相互作用网络,特别是四价键和氢键,它们控制着二氧化碳的聚集和溶剂化,特别是在超临界二氧化碳环境中。通过弥合孤立分子行为和凝聚相现象之间的差距,该观点强调了旋转光谱作为指导高容量二氧化碳捕获材料的合理设计和优化碳捕获和利用过程的工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Insights into CO2 Clustering: Topologies and Driving Forces from Rotational Studies

Molecular Insights into CO2 Clustering: Topologies and Driving Forces from Rotational Studies

Molecular Insights into CO2 Clustering: Topologies and Driving Forces from Rotational Studies

The continuous rise in atmospheric CO2 levels, primarily driven by anthropogenic emissions, poses a significant challenge due to its central role in global warming. Carbon capture strategies are pivotal for mitigating these impacts, yet their effectiveness critically hinges on a molecular-level understanding of CO2 interactions and aggregation behaviors. This Perspective surveys recent advances in rotational spectroscopic studies of CO2 aggregation, spanning from simple dimers and trimers to subnanometer-scale clusters formed with diverse partner molecules. These investigations uncover the intricate network of noncovalent interactions─particularly tetrel and hydrogen bonding, that governs CO2 aggregation and solvation, especially in supercritical CO2 environments. By bridging the gap between isolated molecular behavior and condensed-phase phenomena, this Perspective highlights the potential of rotational spectroscopy as a tool to guide the rational design of high-capacity CO2 capture materials and optimize carbon capture and utilization processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信