碲掺杂介导的边截断和角截断金八面体的合成及其等离子体和电催化性能。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Lijuan Han, , , Heng Zhang, , , Yingying Wang*, , , Xiaohu Wu*, , , Yanyun Ma, , and , Yiqun Zheng*, 
{"title":"碲掺杂介导的边截断和角截断金八面体的合成及其等离子体和电催化性能。","authors":"Lijuan Han,&nbsp;, ,&nbsp;Heng Zhang,&nbsp;, ,&nbsp;Yingying Wang*,&nbsp;, ,&nbsp;Xiaohu Wu*,&nbsp;, ,&nbsp;Yanyun Ma,&nbsp;, and ,&nbsp;Yiqun Zheng*,&nbsp;","doi":"10.1021/acs.langmuir.5c04280","DOIUrl":null,"url":null,"abstract":"<p >Controlling nanocrystal morphology through facet-specific capping agents enables the precise engineering of noble metal nanostructures. Here, we demonstrate that tellurium (Te) doping directs the growth of Au nanocrystals by stabilizing surface facets. By modifying Au seed surfaces with Te species, we achieve a morphological transformation from cuboctahedral seeds to uniquely edge- and corner-truncated octahedra─a structure unattainable without Te mediation. Density functional theory (DFT) simulations reveal that Te incorporation increases the vacancy formation energy of Au facets and realizes p–p orbital overlapping, enhancing their thermodynamic stability. UV–vis spectroscopy and finite-difference time-domain simulations confirm that Te doping has a minimal impact on plasmonic properties, preserving the optical characteristics of Au. The carbon-supported Au<sub>8</sub>Te<sub>1</sub> ECTOs demonstrate exceptional electrocatalytic performance, achieving a remarkable specific activity of 10.5 mA cm<sup>–</sup><sup>2</sup>, a 36-fold enhancement over conventional Au nanoparticles (0.29 mA cm<sup>–</sup><sup>2</sup>), simultaneously exhibiting accelerated reaction kinetics and outstanding long-term operational stability. DFT calculations reveal that Te incorporation stabilizes high-energy Au facets and boosts the catalytic performance. This work establishes Te doping as a powerful strategy for designing nonmetal-doped noble metal nanocrystals with tailored facet architectures, offering opportunities for optical and electrocatalytic applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 41","pages":"28207–28215"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tellurium-Doping Mediated Synthesis of Edge- and Corner-Truncated Gold Octahedra and Their Plasmonic and Electrocatalytic Properties\",\"authors\":\"Lijuan Han,&nbsp;, ,&nbsp;Heng Zhang,&nbsp;, ,&nbsp;Yingying Wang*,&nbsp;, ,&nbsp;Xiaohu Wu*,&nbsp;, ,&nbsp;Yanyun Ma,&nbsp;, and ,&nbsp;Yiqun Zheng*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c04280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Controlling nanocrystal morphology through facet-specific capping agents enables the precise engineering of noble metal nanostructures. Here, we demonstrate that tellurium (Te) doping directs the growth of Au nanocrystals by stabilizing surface facets. By modifying Au seed surfaces with Te species, we achieve a morphological transformation from cuboctahedral seeds to uniquely edge- and corner-truncated octahedra─a structure unattainable without Te mediation. Density functional theory (DFT) simulations reveal that Te incorporation increases the vacancy formation energy of Au facets and realizes p–p orbital overlapping, enhancing their thermodynamic stability. UV–vis spectroscopy and finite-difference time-domain simulations confirm that Te doping has a minimal impact on plasmonic properties, preserving the optical characteristics of Au. The carbon-supported Au<sub>8</sub>Te<sub>1</sub> ECTOs demonstrate exceptional electrocatalytic performance, achieving a remarkable specific activity of 10.5 mA cm<sup>–</sup><sup>2</sup>, a 36-fold enhancement over conventional Au nanoparticles (0.29 mA cm<sup>–</sup><sup>2</sup>), simultaneously exhibiting accelerated reaction kinetics and outstanding long-term operational stability. DFT calculations reveal that Te incorporation stabilizes high-energy Au facets and boosts the catalytic performance. This work establishes Te doping as a powerful strategy for designing nonmetal-doped noble metal nanocrystals with tailored facet architectures, offering opportunities for optical and electrocatalytic applications.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 41\",\"pages\":\"28207–28215\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c04280\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c04280","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过特定表面封盖剂控制纳米晶体形态,可以实现贵金属纳米结构的精确工程。在这里,我们证明了碲(Te)掺杂通过稳定表面表面来指导金纳米晶体的生长。通过用Te修饰Au种子表面,我们实现了从立方体种子到独特的边缘和角落截断的八面体的形态转换,这是没有Te介导无法实现的结构。密度泛函理论(DFT)模拟表明,Te的加入增加了Au表面的空位形成能,实现了p-p轨道重叠,增强了Au表面的热力学稳定性。紫外可见光谱和时域有限差分模拟证实,Te掺杂对等离子体性质的影响最小,保留了Au的光学特性。碳负载的Au8Te1 ECTOs表现出优异的电催化性能,比活度达到了10.5 mA cm-2,比传统的Au纳米颗粒(0.29 mA cm-2)提高了36倍,同时表现出加速的反应动力学和出色的长期运行稳定性。DFT计算表明,Te的加入稳定了高能Au面,提高了催化性能。这项工作确立了Te掺杂作为设计具有定制面结构的非金属掺杂贵金属纳米晶体的有力策略,为光学和电催化应用提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tellurium-Doping Mediated Synthesis of Edge- and Corner-Truncated Gold Octahedra and Their Plasmonic and Electrocatalytic Properties

Tellurium-Doping Mediated Synthesis of Edge- and Corner-Truncated Gold Octahedra and Their Plasmonic and Electrocatalytic Properties

Controlling nanocrystal morphology through facet-specific capping agents enables the precise engineering of noble metal nanostructures. Here, we demonstrate that tellurium (Te) doping directs the growth of Au nanocrystals by stabilizing surface facets. By modifying Au seed surfaces with Te species, we achieve a morphological transformation from cuboctahedral seeds to uniquely edge- and corner-truncated octahedra─a structure unattainable without Te mediation. Density functional theory (DFT) simulations reveal that Te incorporation increases the vacancy formation energy of Au facets and realizes p–p orbital overlapping, enhancing their thermodynamic stability. UV–vis spectroscopy and finite-difference time-domain simulations confirm that Te doping has a minimal impact on plasmonic properties, preserving the optical characteristics of Au. The carbon-supported Au8Te1 ECTOs demonstrate exceptional electrocatalytic performance, achieving a remarkable specific activity of 10.5 mA cm2, a 36-fold enhancement over conventional Au nanoparticles (0.29 mA cm2), simultaneously exhibiting accelerated reaction kinetics and outstanding long-term operational stability. DFT calculations reveal that Te incorporation stabilizes high-energy Au facets and boosts the catalytic performance. This work establishes Te doping as a powerful strategy for designing nonmetal-doped noble metal nanocrystals with tailored facet architectures, offering opportunities for optical and electrocatalytic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信