{"title":"定量CRACI在碱基分辨率上揭示了RNA二氢吡啶的转录组分布。","authors":"Cheng-Wei Ju,Han Li,Bochen Jiang,Xuanhao Zhu,Liang Cui,Zhanghui Han,Junxi Zou,Yunzheng Liu,Shenghai Shen,Hardik Shah,Chang Ye,Yuhao Zhong,Ruiqi Ge,Peng Xia,Yiyi Ji,Shun Liu,Fan Yang,Bei Liu,Yuzhi Xu,Jiangbo Wei,Li-Sheng Zhang,Chuan He","doi":"10.1038/s41467-025-63918-w","DOIUrl":null,"url":null,"abstract":"Dihydrouridine (D) is an abundant RNA modification, yet its roles in mammals remain poorly understood due to limited detection methods. We even do not have a comprehensive profile of D site location and modification stoichiometry in tRNA. Here, we introduce Chemical Reduction Assisted Cytosine Incorporation sequencing (CRACI), a highly sensitive, quantitative approach for mapping D at single-base resolution. Using CRACI, we generate the transcriptome-wide maps of D in both cytoplasmic and mitochondrial tRNAs from mammals and plants. We uncover D sites in mitochondrial tRNAs and identify DUS2L as the 'writer' protein responsible for human mitochondrial tRNAs. Furthermore, we demonstrate that most D modifications have a limited impact on tRNA stability, except for D20a, which also exhibits cis-regulation of adjacent D20 sites. Application of CRACI to human mRNA reveals that D modifications are present but rare and occur at very low stoichiometry. CRACI thus provides a powerful platform for investigating D biology across species.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"81 1","pages":"8863"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative CRACI reveals transcriptome-wide distribution of RNA dihydrouridine at base resolution.\",\"authors\":\"Cheng-Wei Ju,Han Li,Bochen Jiang,Xuanhao Zhu,Liang Cui,Zhanghui Han,Junxi Zou,Yunzheng Liu,Shenghai Shen,Hardik Shah,Chang Ye,Yuhao Zhong,Ruiqi Ge,Peng Xia,Yiyi Ji,Shun Liu,Fan Yang,Bei Liu,Yuzhi Xu,Jiangbo Wei,Li-Sheng Zhang,Chuan He\",\"doi\":\"10.1038/s41467-025-63918-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dihydrouridine (D) is an abundant RNA modification, yet its roles in mammals remain poorly understood due to limited detection methods. We even do not have a comprehensive profile of D site location and modification stoichiometry in tRNA. Here, we introduce Chemical Reduction Assisted Cytosine Incorporation sequencing (CRACI), a highly sensitive, quantitative approach for mapping D at single-base resolution. Using CRACI, we generate the transcriptome-wide maps of D in both cytoplasmic and mitochondrial tRNAs from mammals and plants. We uncover D sites in mitochondrial tRNAs and identify DUS2L as the 'writer' protein responsible for human mitochondrial tRNAs. Furthermore, we demonstrate that most D modifications have a limited impact on tRNA stability, except for D20a, which also exhibits cis-regulation of adjacent D20 sites. Application of CRACI to human mRNA reveals that D modifications are present but rare and occur at very low stoichiometry. CRACI thus provides a powerful platform for investigating D biology across species.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"81 1\",\"pages\":\"8863\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63918-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63918-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quantitative CRACI reveals transcriptome-wide distribution of RNA dihydrouridine at base resolution.
Dihydrouridine (D) is an abundant RNA modification, yet its roles in mammals remain poorly understood due to limited detection methods. We even do not have a comprehensive profile of D site location and modification stoichiometry in tRNA. Here, we introduce Chemical Reduction Assisted Cytosine Incorporation sequencing (CRACI), a highly sensitive, quantitative approach for mapping D at single-base resolution. Using CRACI, we generate the transcriptome-wide maps of D in both cytoplasmic and mitochondrial tRNAs from mammals and plants. We uncover D sites in mitochondrial tRNAs and identify DUS2L as the 'writer' protein responsible for human mitochondrial tRNAs. Furthermore, we demonstrate that most D modifications have a limited impact on tRNA stability, except for D20a, which also exhibits cis-regulation of adjacent D20 sites. Application of CRACI to human mRNA reveals that D modifications are present but rare and occur at very low stoichiometry. CRACI thus provides a powerful platform for investigating D biology across species.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.