{"title":"baf60a依赖性染色质重塑保留β细胞功能,并有助于GLP-1R激动剂的治疗效果。","authors":"Xinyuan Qiu,Ruo-Ran Wang,Qing-Qian Wu,Hongxing Fu,Shuaishuai Zhu,Wei Chen,Wen Wang,Haide Chen,Xiuyu Ji,Wenjing Zhang,Dandan Yan,Jing Yan,Li Jin,Rong Zhang,Mengjie Shi,Ping Luo,Yingqing Yang,Qintao Wang,Ziyin Zhang,Wei Ding,Xiaowen Pan,Chengbin Li,Bin Liang,Guoji Guo,Hai-Long Piao,Min Zheng,Yan Sheng,Lingyun Zhu,Cheng Hu,Zhuo-Xian Meng","doi":"10.1172/jci177980","DOIUrl":null,"url":null,"abstract":"Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of β-cell dysfunction in diabetes. Epigenetic mechanisms govern cellular glucose sensing and GSIS by β-cells, but they remain incompletely defined. Here, we found that BAF60a functions as a chromatin regulator that sustains biphasic GSIS and preserves β-cell function under metabolic stress conditions. BAF60a was downregulated in β-cells from obese and diabetic mice, monkeys, and humans. β-cell-specific inactivation of BAF60a in adult mice impaired GSIS, leading to hyperglycemia and glucose intolerance. Conversely, restoring BAF60a expression improved β-cell function and systemic glucose homeostasis. Mechanistically, BAF60a physically interacted with Nkx6.1 to selectively modulate chromatin accessibility and transcriptional activity of target genes critical for GSIS coupling in islet β-cells. A BAF60a V278M mutation associated with decreased β-cell GSIS function was identified in human subjects. Mice carrying this mutation, which disrupted the interaction between BAF60a and Nkx6.1, displayed β-cell dysfunction and impaired glucose homeostasis. In addition, GLP-1R and GIPR expression was significantly reduced in BAF60a-deficient islets, attenuating the insulinotropic effect of GLP-1R agonists. Together, these findings support a role for BAF60a as a component of the epigenetic machinery that shapes the chromatin landscape in β-cells critical for glucose sensing and insulin secretion.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAF60a-dependent chromatin remodeling preserves β-cell function and contributes to the therapeutic benefits of GLP-1R agonists.\",\"authors\":\"Xinyuan Qiu,Ruo-Ran Wang,Qing-Qian Wu,Hongxing Fu,Shuaishuai Zhu,Wei Chen,Wen Wang,Haide Chen,Xiuyu Ji,Wenjing Zhang,Dandan Yan,Jing Yan,Li Jin,Rong Zhang,Mengjie Shi,Ping Luo,Yingqing Yang,Qintao Wang,Ziyin Zhang,Wei Ding,Xiaowen Pan,Chengbin Li,Bin Liang,Guoji Guo,Hai-Long Piao,Min Zheng,Yan Sheng,Lingyun Zhu,Cheng Hu,Zhuo-Xian Meng\",\"doi\":\"10.1172/jci177980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of β-cell dysfunction in diabetes. Epigenetic mechanisms govern cellular glucose sensing and GSIS by β-cells, but they remain incompletely defined. Here, we found that BAF60a functions as a chromatin regulator that sustains biphasic GSIS and preserves β-cell function under metabolic stress conditions. BAF60a was downregulated in β-cells from obese and diabetic mice, monkeys, and humans. β-cell-specific inactivation of BAF60a in adult mice impaired GSIS, leading to hyperglycemia and glucose intolerance. Conversely, restoring BAF60a expression improved β-cell function and systemic glucose homeostasis. Mechanistically, BAF60a physically interacted with Nkx6.1 to selectively modulate chromatin accessibility and transcriptional activity of target genes critical for GSIS coupling in islet β-cells. A BAF60a V278M mutation associated with decreased β-cell GSIS function was identified in human subjects. Mice carrying this mutation, which disrupted the interaction between BAF60a and Nkx6.1, displayed β-cell dysfunction and impaired glucose homeostasis. In addition, GLP-1R and GIPR expression was significantly reduced in BAF60a-deficient islets, attenuating the insulinotropic effect of GLP-1R agonists. Together, these findings support a role for BAF60a as a component of the epigenetic machinery that shapes the chromatin landscape in β-cells critical for glucose sensing and insulin secretion.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci177980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci177980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BAF60a-dependent chromatin remodeling preserves β-cell function and contributes to the therapeutic benefits of GLP-1R agonists.
Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of β-cell dysfunction in diabetes. Epigenetic mechanisms govern cellular glucose sensing and GSIS by β-cells, but they remain incompletely defined. Here, we found that BAF60a functions as a chromatin regulator that sustains biphasic GSIS and preserves β-cell function under metabolic stress conditions. BAF60a was downregulated in β-cells from obese and diabetic mice, monkeys, and humans. β-cell-specific inactivation of BAF60a in adult mice impaired GSIS, leading to hyperglycemia and glucose intolerance. Conversely, restoring BAF60a expression improved β-cell function and systemic glucose homeostasis. Mechanistically, BAF60a physically interacted with Nkx6.1 to selectively modulate chromatin accessibility and transcriptional activity of target genes critical for GSIS coupling in islet β-cells. A BAF60a V278M mutation associated with decreased β-cell GSIS function was identified in human subjects. Mice carrying this mutation, which disrupted the interaction between BAF60a and Nkx6.1, displayed β-cell dysfunction and impaired glucose homeostasis. In addition, GLP-1R and GIPR expression was significantly reduced in BAF60a-deficient islets, attenuating the insulinotropic effect of GLP-1R agonists. Together, these findings support a role for BAF60a as a component of the epigenetic machinery that shapes the chromatin landscape in β-cells critical for glucose sensing and insulin secretion.