磺化共价有机框架膜的耐缺陷和可扩展扩散渗透发电

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shangfa Pan, Qi Li, Qianqian Fu, Jingting Zeng, Peng Liu, Lei Jiang, Jun Gao
{"title":"磺化共价有机框架膜的耐缺陷和可扩展扩散渗透发电","authors":"Shangfa Pan, Qi Li, Qianqian Fu, Jingting Zeng, Peng Liu, Lei Jiang, Jun Gao","doi":"10.1002/anie.202514637","DOIUrl":null,"url":null,"abstract":"Salinity gradient energy extracted with the reverse electrodialysis technique is attracting great interest and has been suggested as a promising renewable and stable energy source. However, the reverse electrodialysis relies on highly charge‐selective membranes, causing a range of problems including the selectivity–permeability trade‐off, strong concentration polarization, and strict requirement on the material structure, severely limiting its viability for large scale applications. We demonstrate these problems may be addressed by adopting the diffusio–osmosis process to generate power using sulfonated covalent framework membranes (COF), which does not require any charge selectivity. As a result, the membrane shows much higher power density compared to similar‐sized membranes and enables much higher scalability. Remarkably, the generator has loose requirement on material structure and could largely maintain its power generation performance even when a substantial number of pinholes are present. This could make the material fabrication significantly easier than before. We expect our work to advance the practical application of salinity gradient energy extraction.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"22 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect‐Tolerant and Scalable Diffusio–Osmotic Power Generation with Sulfonated Covalent Organic Framework Membrane\",\"authors\":\"Shangfa Pan, Qi Li, Qianqian Fu, Jingting Zeng, Peng Liu, Lei Jiang, Jun Gao\",\"doi\":\"10.1002/anie.202514637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salinity gradient energy extracted with the reverse electrodialysis technique is attracting great interest and has been suggested as a promising renewable and stable energy source. However, the reverse electrodialysis relies on highly charge‐selective membranes, causing a range of problems including the selectivity–permeability trade‐off, strong concentration polarization, and strict requirement on the material structure, severely limiting its viability for large scale applications. We demonstrate these problems may be addressed by adopting the diffusio–osmosis process to generate power using sulfonated covalent framework membranes (COF), which does not require any charge selectivity. As a result, the membrane shows much higher power density compared to similar‐sized membranes and enables much higher scalability. Remarkably, the generator has loose requirement on material structure and could largely maintain its power generation performance even when a substantial number of pinholes are present. This could make the material fabrication significantly easier than before. We expect our work to advance the practical application of salinity gradient energy extraction.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202514637\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202514637","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用反电渗析技术提取盐度梯度能是一种很有前途的可再生稳定能源,引起了人们的广泛关注。然而,反电渗析依赖于高电荷选择性的膜,导致了一系列问题,包括选择性-渗透性权衡,强浓度极化和对材料结构的严格要求,严重限制了其大规模应用的可行性。我们证明这些问题可以通过采用扩散渗透过程来解决,使用磺化共价框架膜(COF)发电,这不需要任何电荷选择性。因此,与类似尺寸的膜相比,该膜显示出更高的功率密度,并具有更高的可扩展性。值得注意的是,该发电机对材料结构要求宽松,即使存在大量针孔,也能在很大程度上保持其发电性能。这可以使材料制造比以前容易得多。我们期望我们的工作能够推动盐度梯度能量提取的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect‐Tolerant and Scalable Diffusio–Osmotic Power Generation with Sulfonated Covalent Organic Framework Membrane
Salinity gradient energy extracted with the reverse electrodialysis technique is attracting great interest and has been suggested as a promising renewable and stable energy source. However, the reverse electrodialysis relies on highly charge‐selective membranes, causing a range of problems including the selectivity–permeability trade‐off, strong concentration polarization, and strict requirement on the material structure, severely limiting its viability for large scale applications. We demonstrate these problems may be addressed by adopting the diffusio–osmosis process to generate power using sulfonated covalent framework membranes (COF), which does not require any charge selectivity. As a result, the membrane shows much higher power density compared to similar‐sized membranes and enables much higher scalability. Remarkably, the generator has loose requirement on material structure and could largely maintain its power generation performance even when a substantial number of pinholes are present. This could make the material fabrication significantly easier than before. We expect our work to advance the practical application of salinity gradient energy extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信