具有高反射率和增强韧性的可扩展制造ZrO2 - Al2O3异质结构涂层用于空间激光防护

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-07 DOI:10.1002/smll.202508424
Xinrui Zhao, Shuqi Wang, Yongchun Zou, Guoliang Chen, Zhiyun Ye, Jianzheng Cui, Xiang Li, Yaming Wang, Jiahu Ouyang, Dechang Jia, Yu Zhou
{"title":"具有高反射率和增强韧性的可扩展制造ZrO2 - Al2O3异质结构涂层用于空间激光防护","authors":"Xinrui Zhao, Shuqi Wang, Yongchun Zou, Guoliang Chen, Zhiyun Ye, Jianzheng Cui, Xiang Li, Yaming Wang, Jiahu Ouyang, Dechang Jia, Yu Zhou","doi":"10.1002/smll.202508424","DOIUrl":null,"url":null,"abstract":"Developing ceramic coatings with high reflectivity, emissivity, and mechanical robustness is critical for enhancing laser protection and thermal management in various optical precision instruments and engineering equipment. However, insufficient optical and mechanical performance causes heat accumulation and fracture under thermomechanical stress that can lead to catastrophic failure. Herein, a scalable ZrO<jats:sub>2</jats:sub>‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> heterostructured coating featuring anti‐laser ablation, thermal management, and toughness is fabricated via a facile yet effective strategy. The multiple scattering of the micro‐convex structure on the coating surface and the refractive index mismatching at the heterogeneous interface enhance its reflectivity to 92% (780–2500 nm), while the enlarged effective radiation area improves its emissivity to 0.93 (8–25 µm). The combination of high reflectivity and low thermal conductivity of 0.6 W/(m K) enables the coating to achieve a laser damage threshold of 637 W cm<jats:sup>−2</jats:sup> for 35 s, reducing the damage depth by 35.46% compared to a single Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> coating. Notably, the fracture toughness of the coating reaches 6.77 MPa m<jats:sup>1/2</jats:sup> due to the synergistic effects of zirconia phase transformation toughening and heterogeneous interface energy absorption. These characteristics make the ZrO<jats:sub>2</jats:sub>‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> heterostructured coating potential protective materials for various laser protection and thermal management applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"123 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Manufactured ZrO2‐Al2O3 Heterostructured Coating with High Reflectivity and Enhanced Toughness for Space Laser Protection\",\"authors\":\"Xinrui Zhao, Shuqi Wang, Yongchun Zou, Guoliang Chen, Zhiyun Ye, Jianzheng Cui, Xiang Li, Yaming Wang, Jiahu Ouyang, Dechang Jia, Yu Zhou\",\"doi\":\"10.1002/smll.202508424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing ceramic coatings with high reflectivity, emissivity, and mechanical robustness is critical for enhancing laser protection and thermal management in various optical precision instruments and engineering equipment. However, insufficient optical and mechanical performance causes heat accumulation and fracture under thermomechanical stress that can lead to catastrophic failure. Herein, a scalable ZrO<jats:sub>2</jats:sub>‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> heterostructured coating featuring anti‐laser ablation, thermal management, and toughness is fabricated via a facile yet effective strategy. The multiple scattering of the micro‐convex structure on the coating surface and the refractive index mismatching at the heterogeneous interface enhance its reflectivity to 92% (780–2500 nm), while the enlarged effective radiation area improves its emissivity to 0.93 (8–25 µm). The combination of high reflectivity and low thermal conductivity of 0.6 W/(m K) enables the coating to achieve a laser damage threshold of 637 W cm<jats:sup>−2</jats:sup> for 35 s, reducing the damage depth by 35.46% compared to a single Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> coating. Notably, the fracture toughness of the coating reaches 6.77 MPa m<jats:sup>1/2</jats:sup> due to the synergistic effects of zirconia phase transformation toughening and heterogeneous interface energy absorption. These characteristics make the ZrO<jats:sub>2</jats:sub>‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> heterostructured coating potential protective materials for various laser protection and thermal management applications.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202508424\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202508424","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发具有高反射率、高发射率和高机械稳健性的陶瓷涂层对于提高各种光学精密仪器和工程设备的激光防护和热管理至关重要。然而,不充分的光学和机械性能会导致热积聚和热机械应力下的断裂,从而导致灾难性失效。本文通过一种简单而有效的策略制备了具有抗激光烧蚀、热管理和韧性的可扩展ZrO2 - Al2O3异质结构涂层。涂层表面微凸结构的多次散射和非均质界面处的折射率失配使其反射率提高到92% (780 ~ 2500 nm),有效辐射面积的扩大使其发射率提高到0.93(8 ~ 25µm)。高反射率和0.6 W/(m K)的低导热系数使涂层能够达到637 W cm−2的激光损伤阈值,持续时间为35 s,与单一Al2O3涂层相比,损伤深度降低了35.46%。值得注意的是,由于氧化锆相变增韧和非均相界面能吸收的协同作用,涂层的断裂韧性达到6.77 MPa m1/2。这些特性使ZrO2‐Al2O3异质结构涂层成为各种激光防护和热管理应用的潜在保护材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scalable Manufactured ZrO2‐Al2O3 Heterostructured Coating with High Reflectivity and Enhanced Toughness for Space Laser Protection

Scalable Manufactured ZrO2‐Al2O3 Heterostructured Coating with High Reflectivity and Enhanced Toughness for Space Laser Protection
Developing ceramic coatings with high reflectivity, emissivity, and mechanical robustness is critical for enhancing laser protection and thermal management in various optical precision instruments and engineering equipment. However, insufficient optical and mechanical performance causes heat accumulation and fracture under thermomechanical stress that can lead to catastrophic failure. Herein, a scalable ZrO2‐Al2O3 heterostructured coating featuring anti‐laser ablation, thermal management, and toughness is fabricated via a facile yet effective strategy. The multiple scattering of the micro‐convex structure on the coating surface and the refractive index mismatching at the heterogeneous interface enhance its reflectivity to 92% (780–2500 nm), while the enlarged effective radiation area improves its emissivity to 0.93 (8–25 µm). The combination of high reflectivity and low thermal conductivity of 0.6 W/(m K) enables the coating to achieve a laser damage threshold of 637 W cm−2 for 35 s, reducing the damage depth by 35.46% compared to a single Al2O3 coating. Notably, the fracture toughness of the coating reaches 6.77 MPa m1/2 due to the synergistic effects of zirconia phase transformation toughening and heterogeneous interface energy absorption. These characteristics make the ZrO2‐Al2O3 heterostructured coating potential protective materials for various laser protection and thermal management applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信