基于Ni(TCNQ)2/NF纳米结构的局部增强电场辅助电催化硝酸还原制氨研究

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nilmadhab Mukherjee, Ashadul Adalder, Sourav Paul, Narad Barman, Ranjit Thapa, Koushik Mitra, Rajashri Urkude, Uttam Kumar Ghorai
{"title":"基于Ni(TCNQ)2/NF纳米结构的局部增强电场辅助电催化硝酸还原制氨研究","authors":"Nilmadhab Mukherjee, Ashadul Adalder, Sourav Paul, Narad Barman, Ranjit Thapa, Koushik Mitra, Rajashri Urkude, Uttam Kumar Ghorai","doi":"10.1002/adfm.202519797","DOIUrl":null,"url":null,"abstract":"Environmentally sustainable electrocatalytic nitrate reduction (NO<jats:sub>3</jats:sub>RR) is a very promising method for the synthesis of ammonia at room temperature via the complex eight‐electron/nine‐proton transfer mechanism. Herein, the local electric field‐assisted electrochemical NO<jats:sub>3</jats:sub>RR process is proposed to identify the origin of catalytic activity and charge transfer kinetics resulting from different morphologies of the electrocatalyst. Accordingly, Ni(TCNQ)<jats:sub>2</jats:sub>/NF nanorods (NRs) and nanotips (NTs) are fabricated on Ni foam as electrocatalysts for the NO<jats:sub>3</jats:sub>RR. The Ni(TCNQ)<jats:sub>2</jats:sub>/NF NTs exhibits an impressive ammonia yield of up to 11286.9 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−</jats:sup><jats:sup>2</jats:sup> and a Faradaic efficiency (FE) of 83.7% at −1.0 V versus RHE, representing nearly a 2.2‐fold increase in yield compared to the Ni(TCNQ)<jats:sub>2</jats:sub>/NF NRs. This greater performance is attributed to the local enhanced electric field (LEEF) generated at the tip‐like Ni(TCNQ)<jats:sub>2</jats:sub>/NF NTs. Furthermore, a Zn–NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> battery is developed here, and Ni(TCNQ)<jats:sub>2</jats:sub>/NF NTs shows a maximum power density of 2.15 mW cm<jats:sup>−2</jats:sup>. Experimental and computational findings demonstrate that the geometric and electrical properties of the nanostructures' shape significantly influence the electrochemical NO<jats:sub>3</jats:sub>RR by enhancing the kinetics of charge transfer. This study seeks to advance research on morphology‐dependent electrochemical NO<jats:sub>3</jats:sub>RR through the strategic control of local electric field intensity in electrocatalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"14 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Enhanced Electric Field Assisted Electrocatalytic Nitrate Reduction to Ammonia Using Ni(TCNQ)2/NF Nanostructures\",\"authors\":\"Nilmadhab Mukherjee, Ashadul Adalder, Sourav Paul, Narad Barman, Ranjit Thapa, Koushik Mitra, Rajashri Urkude, Uttam Kumar Ghorai\",\"doi\":\"10.1002/adfm.202519797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmentally sustainable electrocatalytic nitrate reduction (NO<jats:sub>3</jats:sub>RR) is a very promising method for the synthesis of ammonia at room temperature via the complex eight‐electron/nine‐proton transfer mechanism. Herein, the local electric field‐assisted electrochemical NO<jats:sub>3</jats:sub>RR process is proposed to identify the origin of catalytic activity and charge transfer kinetics resulting from different morphologies of the electrocatalyst. Accordingly, Ni(TCNQ)<jats:sub>2</jats:sub>/NF nanorods (NRs) and nanotips (NTs) are fabricated on Ni foam as electrocatalysts for the NO<jats:sub>3</jats:sub>RR. The Ni(TCNQ)<jats:sub>2</jats:sub>/NF NTs exhibits an impressive ammonia yield of up to 11286.9 µg h<jats:sup>−1</jats:sup> cm<jats:sup>−</jats:sup><jats:sup>2</jats:sup> and a Faradaic efficiency (FE) of 83.7% at −1.0 V versus RHE, representing nearly a 2.2‐fold increase in yield compared to the Ni(TCNQ)<jats:sub>2</jats:sub>/NF NRs. This greater performance is attributed to the local enhanced electric field (LEEF) generated at the tip‐like Ni(TCNQ)<jats:sub>2</jats:sub>/NF NTs. Furthermore, a Zn–NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> battery is developed here, and Ni(TCNQ)<jats:sub>2</jats:sub>/NF NTs shows a maximum power density of 2.15 mW cm<jats:sup>−2</jats:sup>. Experimental and computational findings demonstrate that the geometric and electrical properties of the nanostructures' shape significantly influence the electrochemical NO<jats:sub>3</jats:sub>RR by enhancing the kinetics of charge transfer. This study seeks to advance research on morphology‐dependent electrochemical NO<jats:sub>3</jats:sub>RR through the strategic control of local electric field intensity in electrocatalysts.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202519797\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202519797","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

环境可持续的硝酸电催化还原(NO3RR)是一种非常有前途的室温合成氨的方法,它通过络合的8电子/ 9质子转移机制。本文提出了局部电场辅助的电化学NO3RR过程,以确定由不同电催化剂形态引起的催化活性和电荷转移动力学的来源。因此,在Ni泡沫上制备了Ni(TCNQ)2/NF纳米棒(NRs)和纳米尖(NTs)作为NO3RR的电催化剂。与RHE相比,Ni(TCNQ)2/NF NRs在- 1.0 V下的氨产率高达11286.9µg h - 1 cm - 2,法拉第效率(FE)为83.7%,比Ni(TCNQ)2/NF NRs的产率提高了近2.2倍。这种更好的性能归因于在针尖状Ni(TCNQ)2/NF纳米管上产生的局部增强电场(LEEF)。此外,本文还开发了一种Zn-NO3−电池,Ni(TCNQ)2/NF NTs的最大功率密度为2.15 mW cm−2。实验和计算结果表明,纳米结构形状的几何和电学性质通过增强电荷转移动力学显著影响NO3RR的电化学性能。本研究旨在通过对电催化剂中局部电场强度的策略控制来推进形貌依赖性电化学NO3RR的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Enhanced Electric Field Assisted Electrocatalytic Nitrate Reduction to Ammonia Using Ni(TCNQ)2/NF Nanostructures
Environmentally sustainable electrocatalytic nitrate reduction (NO3RR) is a very promising method for the synthesis of ammonia at room temperature via the complex eight‐electron/nine‐proton transfer mechanism. Herein, the local electric field‐assisted electrochemical NO3RR process is proposed to identify the origin of catalytic activity and charge transfer kinetics resulting from different morphologies of the electrocatalyst. Accordingly, Ni(TCNQ)2/NF nanorods (NRs) and nanotips (NTs) are fabricated on Ni foam as electrocatalysts for the NO3RR. The Ni(TCNQ)2/NF NTs exhibits an impressive ammonia yield of up to 11286.9 µg h−1 cm2 and a Faradaic efficiency (FE) of 83.7% at −1.0 V versus RHE, representing nearly a 2.2‐fold increase in yield compared to the Ni(TCNQ)2/NF NRs. This greater performance is attributed to the local enhanced electric field (LEEF) generated at the tip‐like Ni(TCNQ)2/NF NTs. Furthermore, a Zn–NO3 battery is developed here, and Ni(TCNQ)2/NF NTs shows a maximum power density of 2.15 mW cm−2. Experimental and computational findings demonstrate that the geometric and electrical properties of the nanostructures' shape significantly influence the electrochemical NO3RR by enhancing the kinetics of charge transfer. This study seeks to advance research on morphology‐dependent electrochemical NO3RR through the strategic control of local electric field intensity in electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信