Ankit Kumar Chourasia, Keerti M. Naik, Chandra S. Sharma
{"title":"中熵合金/原位N掺杂氧化石墨烯催化剂复合材料用于Li─CO2Mars电池的超高放电容量和高倍率可循环性","authors":"Ankit Kumar Chourasia, Keerti M. Naik, Chandra S. Sharma","doi":"10.1002/smll.202506343","DOIUrl":null,"url":null,"abstract":"The immense potential of Li─CO<jats:sub>2</jats:sub> batteries in mitigating CO<jats:sub>2</jats:sub> emissions makes them an attractive choice for developing next‐generation high‐energy‐density alternative energy storage systems. However, insufficient Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> decomposition during recharging deactivates the catalyst, reducing the dischargeability and cycle life. Herein, a medium‐entropy quaternary alloy (QA) catalyst comprising of the metals Mn, Zn, Co, and Ni is designed with in situ N‐doped reduced graphene oxide (NrGO) using a multielement metal organic framework (MZIF) (QA@NrGO). The uniformly dispersed quaternary alloy with high disorder and the synergy between the NrGO and QA help Li─CO<jats:sub>2Mars</jats:sub> batteries deliver an ultrahigh discharge capacity of 50605 mAh g<jats:sup>−1</jats:sup> at the high current density of 500 mA g<jats:sup>−1</jats:sup> and a maximum cycle life of 240 cycles. Ex situ post‐cycling physicochemical investigations reveal the formation of disc‐shaped Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> discharge product on the active sites and nearly complete decomposition on charging, confirming the excellent reversibility. Further, the density functional theory (DFT) studies show that improved CO<jats:sub>2</jats:sub> adsorption and the tendency toward relatively stable formation of the discharge products of Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> and amorphous carbon helped achieve the excellent electrochemical performance. The designed medium entropy alloy (MEA) catalyst provides a pathway for developing low‐cost, highly active bifunctional catalysts for Li─CO<jats:sub>2Mars</jats:sub> batteries.","PeriodicalId":228,"journal":{"name":"Small","volume":"70 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medium‐Entropy Alloy/In Situ N‐doped rGO Catalyst Composite for Ultrahigh Discharge Capacity and High‐Rate Cyclability in Li─CO2Mars Batteries\",\"authors\":\"Ankit Kumar Chourasia, Keerti M. Naik, Chandra S. Sharma\",\"doi\":\"10.1002/smll.202506343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The immense potential of Li─CO<jats:sub>2</jats:sub> batteries in mitigating CO<jats:sub>2</jats:sub> emissions makes them an attractive choice for developing next‐generation high‐energy‐density alternative energy storage systems. However, insufficient Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> decomposition during recharging deactivates the catalyst, reducing the dischargeability and cycle life. Herein, a medium‐entropy quaternary alloy (QA) catalyst comprising of the metals Mn, Zn, Co, and Ni is designed with in situ N‐doped reduced graphene oxide (NrGO) using a multielement metal organic framework (MZIF) (QA@NrGO). The uniformly dispersed quaternary alloy with high disorder and the synergy between the NrGO and QA help Li─CO<jats:sub>2Mars</jats:sub> batteries deliver an ultrahigh discharge capacity of 50605 mAh g<jats:sup>−1</jats:sup> at the high current density of 500 mA g<jats:sup>−1</jats:sup> and a maximum cycle life of 240 cycles. Ex situ post‐cycling physicochemical investigations reveal the formation of disc‐shaped Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> discharge product on the active sites and nearly complete decomposition on charging, confirming the excellent reversibility. Further, the density functional theory (DFT) studies show that improved CO<jats:sub>2</jats:sub> adsorption and the tendency toward relatively stable formation of the discharge products of Li<jats:sub>2</jats:sub>CO<jats:sub>3</jats:sub> and amorphous carbon helped achieve the excellent electrochemical performance. The designed medium entropy alloy (MEA) catalyst provides a pathway for developing low‐cost, highly active bifunctional catalysts for Li─CO<jats:sub>2Mars</jats:sub> batteries.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202506343\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202506343","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
Li─CO2电池在减少二氧化碳排放方面的巨大潜力使其成为开发下一代高能量密度替代储能系统的有吸引力的选择。然而,充电过程中Li2CO3分解不足使催化剂失活,降低了可放电性和循环寿命。本文采用多元素金属有机框架(MZIF) (QA@NrGO),采用原位N掺杂还原氧化石墨烯(NrGO),设计了一种由金属Mn、Zn、Co和Ni组成的中熵季元合金(QA)催化剂。高无序度的均匀分散的季元合金,以及NrGO和QA的协同作用,帮助Li─CO2Mars电池在500 mA g−1的高电流密度下获得50605 mAh g−1的超高放电容量和240次的最大循环寿命。非原位循环后的物理化学研究表明,在活性位点形成圆盘状的Li2CO3放电产物,并且在充电时几乎完全分解,证实了优异的可逆性。此外,密度泛函理论(DFT)研究表明,CO2吸附性能的提高以及Li2CO3和非晶碳的放电产物相对稳定形成的趋势有助于实现优异的电化学性能。所设计的中熵合金(MEA)催化剂为开发低成本、高活性的Li─co2火星电池双功能催化剂提供了一条途径。
Medium‐Entropy Alloy/In Situ N‐doped rGO Catalyst Composite for Ultrahigh Discharge Capacity and High‐Rate Cyclability in Li─CO2Mars Batteries
The immense potential of Li─CO2 batteries in mitigating CO2 emissions makes them an attractive choice for developing next‐generation high‐energy‐density alternative energy storage systems. However, insufficient Li2CO3 decomposition during recharging deactivates the catalyst, reducing the dischargeability and cycle life. Herein, a medium‐entropy quaternary alloy (QA) catalyst comprising of the metals Mn, Zn, Co, and Ni is designed with in situ N‐doped reduced graphene oxide (NrGO) using a multielement metal organic framework (MZIF) (QA@NrGO). The uniformly dispersed quaternary alloy with high disorder and the synergy between the NrGO and QA help Li─CO2Mars batteries deliver an ultrahigh discharge capacity of 50605 mAh g−1 at the high current density of 500 mA g−1 and a maximum cycle life of 240 cycles. Ex situ post‐cycling physicochemical investigations reveal the formation of disc‐shaped Li2CO3 discharge product on the active sites and nearly complete decomposition on charging, confirming the excellent reversibility. Further, the density functional theory (DFT) studies show that improved CO2 adsorption and the tendency toward relatively stable formation of the discharge products of Li2CO3 and amorphous carbon helped achieve the excellent electrochemical performance. The designed medium entropy alloy (MEA) catalyst provides a pathway for developing low‐cost, highly active bifunctional catalysts for Li─CO2Mars batteries.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.