分子内非共价相互作用使有机电化学晶体管具有高离子电子性能

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guocai Liu, Meng Zhang, Jikai Lv, Hao Wang, Bowei Ma, Xiaobin Gu, Yunlong Guo, Yunqi Liu, Hui Huang
{"title":"分子内非共价相互作用使有机电化学晶体管具有高离子电子性能","authors":"Guocai Liu, Meng Zhang, Jikai Lv, Hao Wang, Bowei Ma, Xiaobin Gu, Yunlong Guo, Yunqi Liu, Hui Huang","doi":"10.1002/adma.202508541","DOIUrl":null,"url":null,"abstract":"Organic electrochemical transistors (OECTs) show great potential in bioelectronics due to their iontronic coupling, low driving voltages (&lt;1 V), and biocompatibility. Nevertheless, their low iontronic performance, particularly in terms of transconductance (<i>g</i><sub>m</sub>), limits their ability to acquire high-precision biosignals. To address this issue, a series of poly(bithiophene)s (opg2T-O, opg2T-S, and opg2T-Se) bearing 4,4′-position glycol side chains are synthesized. Upon varying furan, thiophene, and selenophene comonomers, the intramolecular noncovalent interactions are systematically tuned. Comprehensive theoretical analyses reveal that opg2T-Se demonstrates stronger intramolecular Se···O noncovalent interactions than the S···O interactions in opg2T-S and opg2T-O, affording a more planar and rigid molecular configuration in opg2T-Se. Meanwhile, opg2T-Se exhibits closer <i>π</i>–<i>π</i> stacking and lamellar-packing and prefers an edge-on orientation. Consequently, a record-high geometry-normalized transconductance (<i>g</i><sub>m,n</sub>) of 415 S cm<sup>−1</sup>, along with remarkable hole mobility (<i>µ</i> = 2.99 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>) and volumetric capacitance (<i>C</i>* = 423.3 F cm<sup>−3</sup>) are achieved in opg2T-Se based OECTs. Importantly, the opg2T-Se-based devices exhibits much higher signal fidelity in in-vitro human electrocardiogram (ECG) than the other two devices. This study highlights the importance of intramolecular noncovalent interaction in the channel layer materials for achieving high-performance OECTs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"50 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Iontronic Performance in Organic Electrochemical Transistors Enabled by Intramolecular Noncovalent Interactions\",\"authors\":\"Guocai Liu, Meng Zhang, Jikai Lv, Hao Wang, Bowei Ma, Xiaobin Gu, Yunlong Guo, Yunqi Liu, Hui Huang\",\"doi\":\"10.1002/adma.202508541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic electrochemical transistors (OECTs) show great potential in bioelectronics due to their iontronic coupling, low driving voltages (&lt;1 V), and biocompatibility. Nevertheless, their low iontronic performance, particularly in terms of transconductance (<i>g</i><sub>m</sub>), limits their ability to acquire high-precision biosignals. To address this issue, a series of poly(bithiophene)s (opg2T-O, opg2T-S, and opg2T-Se) bearing 4,4′-position glycol side chains are synthesized. Upon varying furan, thiophene, and selenophene comonomers, the intramolecular noncovalent interactions are systematically tuned. Comprehensive theoretical analyses reveal that opg2T-Se demonstrates stronger intramolecular Se···O noncovalent interactions than the S···O interactions in opg2T-S and opg2T-O, affording a more planar and rigid molecular configuration in opg2T-Se. Meanwhile, opg2T-Se exhibits closer <i>π</i>–<i>π</i> stacking and lamellar-packing and prefers an edge-on orientation. Consequently, a record-high geometry-normalized transconductance (<i>g</i><sub>m,n</sub>) of 415 S cm<sup>−1</sup>, along with remarkable hole mobility (<i>µ</i> = 2.99 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>) and volumetric capacitance (<i>C</i>* = 423.3 F cm<sup>−3</sup>) are achieved in opg2T-Se based OECTs. Importantly, the opg2T-Se-based devices exhibits much higher signal fidelity in in-vitro human electrocardiogram (ECG) than the other two devices. This study highlights the importance of intramolecular noncovalent interaction in the channel layer materials for achieving high-performance OECTs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202508541\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202508541","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机电化学晶体管(OECTs)由于其离子电子耦合、低驱动电压(< 1v)和生物相容性而在生物电子学领域显示出巨大的潜力。然而,它们的低离子电子性能,特别是在跨导(gm)方面,限制了它们获取高精度生物信号的能力。为了解决这个问题,合成了一系列含4,4 '位乙二醇侧链的聚(二噻吩)s (opg2T-O, opg2T-S和opg2T-Se)。根据呋喃、噻吩和硒烯共聚物的不同,分子内非共价相互作用被系统地调整。综合理论分析表明,opg2T-Se分子内Se··O非共价相互作用比opg2T-S和opg2T-O中的S··O相互作用更强,使opg2T-Se具有更平面和刚性的分子构型。同时,opg2T-Se表现出更紧密的π -π堆积和层状堆积,倾向于边对边取向。因此,在基于opg2T-Se的oect中,实现了创纪录的415 S cm−1的几何归一化跨电导(gm,n),以及显著的空穴迁移率(µ= 2.99 cm2 V−1 S−1)和体积电容(C* = 423.3 F cm−3)。重要的是,基于opg2t - se的设备在体外人体心电图(ECG)中表现出比其他两种设备更高的信号保真度。这项研究强调了通道层材料中分子内非共价相互作用对实现高性能OECTs的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High Iontronic Performance in Organic Electrochemical Transistors Enabled by Intramolecular Noncovalent Interactions

High Iontronic Performance in Organic Electrochemical Transistors Enabled by Intramolecular Noncovalent Interactions
Organic electrochemical transistors (OECTs) show great potential in bioelectronics due to their iontronic coupling, low driving voltages (<1 V), and biocompatibility. Nevertheless, their low iontronic performance, particularly in terms of transconductance (gm), limits their ability to acquire high-precision biosignals. To address this issue, a series of poly(bithiophene)s (opg2T-O, opg2T-S, and opg2T-Se) bearing 4,4′-position glycol side chains are synthesized. Upon varying furan, thiophene, and selenophene comonomers, the intramolecular noncovalent interactions are systematically tuned. Comprehensive theoretical analyses reveal that opg2T-Se demonstrates stronger intramolecular Se···O noncovalent interactions than the S···O interactions in opg2T-S and opg2T-O, affording a more planar and rigid molecular configuration in opg2T-Se. Meanwhile, opg2T-Se exhibits closer ππ stacking and lamellar-packing and prefers an edge-on orientation. Consequently, a record-high geometry-normalized transconductance (gm,n) of 415 S cm−1, along with remarkable hole mobility (µ = 2.99 cm2 V−1 s−1) and volumetric capacitance (C* = 423.3 F cm−3) are achieved in opg2T-Se based OECTs. Importantly, the opg2T-Se-based devices exhibits much higher signal fidelity in in-vitro human electrocardiogram (ECG) than the other two devices. This study highlights the importance of intramolecular noncovalent interaction in the channel layer materials for achieving high-performance OECTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信