Cassandra J. Kotsopoulos, Marie Gutgesell, Matthew M. Guzzo, Thomas A. Johnston, Tyler D. Tunney, Timothy J. Bartley, Bailey C. McMeans, Mark S. Ridgway, Paul J. Blanchfield, Aaron T. Fisk, Kevin S. McCann
{"title":"在较暖的温度和较小的生态系统规模下,减少了湖鳟鱼食物网的种内变异","authors":"Cassandra J. Kotsopoulos, Marie Gutgesell, Matthew M. Guzzo, Thomas A. Johnston, Tyler D. Tunney, Timothy J. Bartley, Bailey C. McMeans, Mark S. Ridgway, Paul J. Blanchfield, Aaron T. Fisk, Kevin S. McCann","doi":"10.1002/ecy.70222","DOIUrl":null,"url":null,"abstract":"Food web theory has illustrated that mobile top predators, such as lake trout (<jats:italic>Salvelinus namaycush</jats:italic>), can be potent stabilizers of food webs due to their ability to shift foraging behaviors in response to changing conditions. Consistent with this, research has demonstrated that mean lake trout food web attributes (i.e., trophic position and nearshore coupling) structurally change across environmental gradients; however, intraspecific variation in these attributes across gradients has not been fully explored. Here, we used stable isotope‐based food web metrics to investigate how both mean and intraspecific variation in trophic structure changes in Canadian boreal shield lakes across gradients in ecosystem size, temperature, and competition. Consistent with earlier findings, we find nearshore coupling decreases and trophic position increases with warmer summer climate. In contrast to previous findings, increasing lake area predicted increased nearshore coupling and was not associated with lake trout trophic position. Our results show that warmer temperatures and smaller ecosystem sizes reduce the expression of intraspecific variation in food web structures. Specifically, larger lakes increased variation in nearshore coupling and trophic position, resulting in larger niche areas, and warmer lakes reduced variation in nearshore coupling and tended to generate smaller niche areas. Interestingly, we found little evidence for the relative abundance of lake trout or other predator taxa (surrogates of intra‐ and interspecific competition) influencing mean and variance in lake trout trophic structure. Intraspecific variation can promote ecosystem resilience by enabling diverse individual responses that help buffer populations against environmental change. Therefore, reduction in intraspecific variation in smaller, warmer lakes may have undesirable consequences for lake trout and the biota in these Canadian boreal shield lakes, leaving these ecosystems less able to adjust to future perturbations.","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"4 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced intraspecific variation in lake trout food webs under warmer temperatures and smaller ecosystem sizes\",\"authors\":\"Cassandra J. Kotsopoulos, Marie Gutgesell, Matthew M. Guzzo, Thomas A. Johnston, Tyler D. Tunney, Timothy J. Bartley, Bailey C. McMeans, Mark S. Ridgway, Paul J. Blanchfield, Aaron T. Fisk, Kevin S. McCann\",\"doi\":\"10.1002/ecy.70222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food web theory has illustrated that mobile top predators, such as lake trout (<jats:italic>Salvelinus namaycush</jats:italic>), can be potent stabilizers of food webs due to their ability to shift foraging behaviors in response to changing conditions. Consistent with this, research has demonstrated that mean lake trout food web attributes (i.e., trophic position and nearshore coupling) structurally change across environmental gradients; however, intraspecific variation in these attributes across gradients has not been fully explored. Here, we used stable isotope‐based food web metrics to investigate how both mean and intraspecific variation in trophic structure changes in Canadian boreal shield lakes across gradients in ecosystem size, temperature, and competition. Consistent with earlier findings, we find nearshore coupling decreases and trophic position increases with warmer summer climate. In contrast to previous findings, increasing lake area predicted increased nearshore coupling and was not associated with lake trout trophic position. Our results show that warmer temperatures and smaller ecosystem sizes reduce the expression of intraspecific variation in food web structures. Specifically, larger lakes increased variation in nearshore coupling and trophic position, resulting in larger niche areas, and warmer lakes reduced variation in nearshore coupling and tended to generate smaller niche areas. Interestingly, we found little evidence for the relative abundance of lake trout or other predator taxa (surrogates of intra‐ and interspecific competition) influencing mean and variance in lake trout trophic structure. Intraspecific variation can promote ecosystem resilience by enabling diverse individual responses that help buffer populations against environmental change. Therefore, reduction in intraspecific variation in smaller, warmer lakes may have undesirable consequences for lake trout and the biota in these Canadian boreal shield lakes, leaving these ecosystems less able to adjust to future perturbations.\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/ecy.70222\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecy.70222","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Reduced intraspecific variation in lake trout food webs under warmer temperatures and smaller ecosystem sizes
Food web theory has illustrated that mobile top predators, such as lake trout (Salvelinus namaycush), can be potent stabilizers of food webs due to their ability to shift foraging behaviors in response to changing conditions. Consistent with this, research has demonstrated that mean lake trout food web attributes (i.e., trophic position and nearshore coupling) structurally change across environmental gradients; however, intraspecific variation in these attributes across gradients has not been fully explored. Here, we used stable isotope‐based food web metrics to investigate how both mean and intraspecific variation in trophic structure changes in Canadian boreal shield lakes across gradients in ecosystem size, temperature, and competition. Consistent with earlier findings, we find nearshore coupling decreases and trophic position increases with warmer summer climate. In contrast to previous findings, increasing lake area predicted increased nearshore coupling and was not associated with lake trout trophic position. Our results show that warmer temperatures and smaller ecosystem sizes reduce the expression of intraspecific variation in food web structures. Specifically, larger lakes increased variation in nearshore coupling and trophic position, resulting in larger niche areas, and warmer lakes reduced variation in nearshore coupling and tended to generate smaller niche areas. Interestingly, we found little evidence for the relative abundance of lake trout or other predator taxa (surrogates of intra‐ and interspecific competition) influencing mean and variance in lake trout trophic structure. Intraspecific variation can promote ecosystem resilience by enabling diverse individual responses that help buffer populations against environmental change. Therefore, reduction in intraspecific variation in smaller, warmer lakes may have undesirable consequences for lake trout and the biota in these Canadian boreal shield lakes, leaving these ecosystems less able to adjust to future perturbations.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.