Klára Šmídová, Helena Soinne, Shin Woong Kim, Jyri Tirronniemi, Raffaella Meffe, Paula E. Redondo-Hasselerharm, Melanie Braun, Matthias C. Rillig, Hannu Fritze, Bartosz Adamczyk, Johanna Nikama, Janne Kaseva, Vili Saartama, Wulf Amelung, Rachel Hurley, Jakub Hofman, Luca Nizzetto, Salla Selonen, Sannakajsa Velmala
{"title":"传统和可生物降解的农业微塑料:对欧洲土壤性质和微生物功能的影响","authors":"Klára Šmídová, Helena Soinne, Shin Woong Kim, Jyri Tirronniemi, Raffaella Meffe, Paula E. Redondo-Hasselerharm, Melanie Braun, Matthias C. Rillig, Hannu Fritze, Bartosz Adamczyk, Johanna Nikama, Janne Kaseva, Vili Saartama, Wulf Amelung, Rachel Hurley, Jakub Hofman, Luca Nizzetto, Salla Selonen, Sannakajsa Velmala","doi":"10.1016/j.envpol.2025.127212","DOIUrl":null,"url":null,"abstract":"Agricultural plastics like mulching films may become a major source of microplastic (MP) soil contamination during their degradation and fragmentation. This study investigates the effects of agricultural MPs from conventional (linear low-density polyethylene, PE) and biodegradable (starch-blended polybutylene adipate co-terephthalate, PBAT-BD) mulching films on soil physicochemical properties, aggregation, microbial diversity and functions, litter decomposition, and greenhouse gases emissions (GHG). For this purpose, MPs were mixed into soils at realistic MP concentrations of 0.005% and 0.05% (w/w) in 2022 on experimental plots in three EU countries representing different pedoclimatic conditions (Finland, Germany and Spain), followed by monitoring of the above-mentioned variables in the subsequent growing seasons 2022 and 2023. We found several significant MP-induced effects for soil properties, aggregation, microbial diversity, litter decomposition, and GHG, but the effect endpoints were less pronounced or varied considerably. Contrarily, microbial activity, contributing to soil functions such as nitrogen cycling, was consistently reduced by both conventional and biodegradable MPs. The reductions were more pronounced after the second season and for the higher MP treatment. As the higher MP concentration (i.e., 0.05% w/w) is environmentally relevant in Europe, our findings emphasize the potential effects of environmentally relevant MP concentrations on soil health. Furthermore, the effects increased from north to south, probably modulated by varying pedoclimatic conditions, inducing reflection of a need for regionally tailored risk assessment to protect soil from plastic pollution.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"8 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conventional and biodegradable agricultural microplastics: effects on soil properties and microbial functions across a European pedoclimatic gradient\",\"authors\":\"Klára Šmídová, Helena Soinne, Shin Woong Kim, Jyri Tirronniemi, Raffaella Meffe, Paula E. Redondo-Hasselerharm, Melanie Braun, Matthias C. Rillig, Hannu Fritze, Bartosz Adamczyk, Johanna Nikama, Janne Kaseva, Vili Saartama, Wulf Amelung, Rachel Hurley, Jakub Hofman, Luca Nizzetto, Salla Selonen, Sannakajsa Velmala\",\"doi\":\"10.1016/j.envpol.2025.127212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agricultural plastics like mulching films may become a major source of microplastic (MP) soil contamination during their degradation and fragmentation. This study investigates the effects of agricultural MPs from conventional (linear low-density polyethylene, PE) and biodegradable (starch-blended polybutylene adipate co-terephthalate, PBAT-BD) mulching films on soil physicochemical properties, aggregation, microbial diversity and functions, litter decomposition, and greenhouse gases emissions (GHG). For this purpose, MPs were mixed into soils at realistic MP concentrations of 0.005% and 0.05% (w/w) in 2022 on experimental plots in three EU countries representing different pedoclimatic conditions (Finland, Germany and Spain), followed by monitoring of the above-mentioned variables in the subsequent growing seasons 2022 and 2023. We found several significant MP-induced effects for soil properties, aggregation, microbial diversity, litter decomposition, and GHG, but the effect endpoints were less pronounced or varied considerably. Contrarily, microbial activity, contributing to soil functions such as nitrogen cycling, was consistently reduced by both conventional and biodegradable MPs. The reductions were more pronounced after the second season and for the higher MP treatment. As the higher MP concentration (i.e., 0.05% w/w) is environmentally relevant in Europe, our findings emphasize the potential effects of environmentally relevant MP concentrations on soil health. Furthermore, the effects increased from north to south, probably modulated by varying pedoclimatic conditions, inducing reflection of a need for regionally tailored risk assessment to protect soil from plastic pollution.\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envpol.2025.127212\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.127212","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Conventional and biodegradable agricultural microplastics: effects on soil properties and microbial functions across a European pedoclimatic gradient
Agricultural plastics like mulching films may become a major source of microplastic (MP) soil contamination during their degradation and fragmentation. This study investigates the effects of agricultural MPs from conventional (linear low-density polyethylene, PE) and biodegradable (starch-blended polybutylene adipate co-terephthalate, PBAT-BD) mulching films on soil physicochemical properties, aggregation, microbial diversity and functions, litter decomposition, and greenhouse gases emissions (GHG). For this purpose, MPs were mixed into soils at realistic MP concentrations of 0.005% and 0.05% (w/w) in 2022 on experimental plots in three EU countries representing different pedoclimatic conditions (Finland, Germany and Spain), followed by monitoring of the above-mentioned variables in the subsequent growing seasons 2022 and 2023. We found several significant MP-induced effects for soil properties, aggregation, microbial diversity, litter decomposition, and GHG, but the effect endpoints were less pronounced or varied considerably. Contrarily, microbial activity, contributing to soil functions such as nitrogen cycling, was consistently reduced by both conventional and biodegradable MPs. The reductions were more pronounced after the second season and for the higher MP treatment. As the higher MP concentration (i.e., 0.05% w/w) is environmentally relevant in Europe, our findings emphasize the potential effects of environmentally relevant MP concentrations on soil health. Furthermore, the effects increased from north to south, probably modulated by varying pedoclimatic conditions, inducing reflection of a need for regionally tailored risk assessment to protect soil from plastic pollution.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.