铁锚黑磷与磷酸盐质子水库工业电流密度水氧化

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xinyuan Chen, Yulu Wan, Yue Yu, Shangqing Chen, Yi Huang, Lijuan Shi, Liwei Cheng, Kangrui Sun, Fanpeng Cheng, Huijuan Guo, Qun Yi
{"title":"铁锚黑磷与磷酸盐质子水库工业电流密度水氧化","authors":"Xinyuan Chen, Yulu Wan, Yue Yu, Shangqing Chen, Yi Huang, Lijuan Shi, Liwei Cheng, Kangrui Sun, Fanpeng Cheng, Huijuan Guo, Qun Yi","doi":"10.1039/d5ta06118k","DOIUrl":null,"url":null,"abstract":"Black phosphorus (BP)-based electrocatalysts exhibit potential applications in water oxidation due to the unique two-dimensional (2D) structure and electronic properties. Nevertheless, low intrinsic catalytic activity and sluggish multi-step proton-coupled electron transfer (PCET) reaction limit the performance of BP-based oxygen evolution reaction (OER) electrocatalysts. Herein, we report an Fe-anchored BP nanosheets (Fe/BP NS) catalyst synthesized via electrochemical exfoliation to fully expose active sites while anchoring Fe sites for efficient OER. Benefiting from the 2D nanosheet structure with rapid electron transfer ability, Fe/BP NS demonstrates high OER catalytic activity with low overpotentials of 240 mV at 10 mA cm-2, 379 mV at 1000 mA cm-2, and a Tafel slope of 24.2 mV dec-1. Experimental results and in situ spectroscopy characterizations confirm that the phosphate species generated by electro-oxidation of the electron-rich BP support act as proton reservoirs, decoupling the PCET step of adsorbate evolution mechanism (AEM) and transforming the rate-determining step (RDS) from *O to *OOH into *OOH deprotonation step. Meanwhile, the anchored Fe sites accelerate the formation of *OOH, ultimately achieving the boosted OER process.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"4 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron-Anchored Black Phosphorus with Phosphate Proton Reservoir for Industrial-Current-Density Water Oxidation\",\"authors\":\"Xinyuan Chen, Yulu Wan, Yue Yu, Shangqing Chen, Yi Huang, Lijuan Shi, Liwei Cheng, Kangrui Sun, Fanpeng Cheng, Huijuan Guo, Qun Yi\",\"doi\":\"10.1039/d5ta06118k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Black phosphorus (BP)-based electrocatalysts exhibit potential applications in water oxidation due to the unique two-dimensional (2D) structure and electronic properties. Nevertheless, low intrinsic catalytic activity and sluggish multi-step proton-coupled electron transfer (PCET) reaction limit the performance of BP-based oxygen evolution reaction (OER) electrocatalysts. Herein, we report an Fe-anchored BP nanosheets (Fe/BP NS) catalyst synthesized via electrochemical exfoliation to fully expose active sites while anchoring Fe sites for efficient OER. Benefiting from the 2D nanosheet structure with rapid electron transfer ability, Fe/BP NS demonstrates high OER catalytic activity with low overpotentials of 240 mV at 10 mA cm-2, 379 mV at 1000 mA cm-2, and a Tafel slope of 24.2 mV dec-1. Experimental results and in situ spectroscopy characterizations confirm that the phosphate species generated by electro-oxidation of the electron-rich BP support act as proton reservoirs, decoupling the PCET step of adsorbate evolution mechanism (AEM) and transforming the rate-determining step (RDS) from *O to *OOH into *OOH deprotonation step. Meanwhile, the anchored Fe sites accelerate the formation of *OOH, ultimately achieving the boosted OER process.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta06118k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta06118k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于黑磷(BP)的电催化剂由于其独特的二维(2D)结构和电子性质在水氧化中具有潜在的应用前景。然而,bp基析氧反应(OER)电催化剂的固有催化活性低,多步质子耦合电子转移(PCET)反应缓慢,限制了其性能。在此,我们报道了一种铁锚定的BP纳米片(Fe/BP NS)催化剂,通过电化学剥离来充分暴露活性位点,同时锚定铁位点以实现高效的OER。得益于具有快速电子转移能力的二维纳米片结构,Fe/BP NS具有高的OER催化活性,其过电位在10 mA cm-2时为240 mV,在1000 mA cm-2时为379 mV, Tafel斜率为24.2 mV / dec1。实验结果和原位光谱表征证实了富电子BP载体电氧化生成的磷酸盐作为质子储层,解耦了吸附质演化机制(AEM)的PCET步骤,并将由*O到*OOH的速率决定步骤(RDS)转化为*OOH脱质子步骤。同时,锚定的Fe位点加速了*OOH的形成,最终实现了增强的OER过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron-Anchored Black Phosphorus with Phosphate Proton Reservoir for Industrial-Current-Density Water Oxidation
Black phosphorus (BP)-based electrocatalysts exhibit potential applications in water oxidation due to the unique two-dimensional (2D) structure and electronic properties. Nevertheless, low intrinsic catalytic activity and sluggish multi-step proton-coupled electron transfer (PCET) reaction limit the performance of BP-based oxygen evolution reaction (OER) electrocatalysts. Herein, we report an Fe-anchored BP nanosheets (Fe/BP NS) catalyst synthesized via electrochemical exfoliation to fully expose active sites while anchoring Fe sites for efficient OER. Benefiting from the 2D nanosheet structure with rapid electron transfer ability, Fe/BP NS demonstrates high OER catalytic activity with low overpotentials of 240 mV at 10 mA cm-2, 379 mV at 1000 mA cm-2, and a Tafel slope of 24.2 mV dec-1. Experimental results and in situ spectroscopy characterizations confirm that the phosphate species generated by electro-oxidation of the electron-rich BP support act as proton reservoirs, decoupling the PCET step of adsorbate evolution mechanism (AEM) and transforming the rate-determining step (RDS) from *O to *OOH into *OOH deprotonation step. Meanwhile, the anchored Fe sites accelerate the formation of *OOH, ultimately achieving the boosted OER process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信