实现全固态锂电池的阳离子动态弹性体电解质

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sirin Kamarulzaman , Dorsasadat Safanama , Zhi Yuan Lee , Ming Yan Tan , Carmen X.N. Lim , Mavis W.X. Low , Debbie H.L. Seng , Sheau Wei Chien , Jason Y.C. Lim , Shermin S. Goh , Derrick W.H. Fam
{"title":"实现全固态锂电池的阳离子动态弹性体电解质","authors":"Sirin Kamarulzaman ,&nbsp;Dorsasadat Safanama ,&nbsp;Zhi Yuan Lee ,&nbsp;Ming Yan Tan ,&nbsp;Carmen X.N. Lim ,&nbsp;Mavis W.X. Low ,&nbsp;Debbie H.L. Seng ,&nbsp;Sheau Wei Chien ,&nbsp;Jason Y.C. Lim ,&nbsp;Shermin S. Goh ,&nbsp;Derrick W.H. Fam","doi":"10.1016/j.nanoen.2025.111507","DOIUrl":null,"url":null,"abstract":"<div><div>Elastomeric solid polymer electrolytes (SPEs), exhibiting excellent toughness and interfacial stability with lithium (Li) metal anodes, are promising electrolytes for safe and durable all-solid-state Li-batteries. However, many elastomeric SPEs suffer from low conductivity, necessitating addition of liquid electrolytes which can compromise mechanical integrity and cause leakages. Herein, we introduce a <em><strong>fully</strong></em> solid-state elastomeric poly(triazolium) (<strong>PT-Li</strong>) SPE, which integrates the principles of poly(ionic liquid) (PIL) and covalent adaptable network (CAN) -based electrolytes to achieve enhanced performance characteristics. Like PILs, <strong>PT-Li</strong> possesses a wide electrochemical window (up to 5.2 V). Meanwhile, like CANs, dynamic triazolium crosslinking enables <strong>PT-Li</strong> to remain mechanically robust when cycling (shear loss factor ≤ 0.2 at 60 °C) while facilitating (re)processing under heat and pressure. Additionally, the cationic triazolium moieties facilitate Li<sup>+</sup> -ion mobility (ionic conductivity, σ = 3.2 × 10<sup>−5</sup> S cm<sup>−1</sup> at 30 °C, 2 × 10<sup>−4</sup> S cm<sup>−1</sup> at 60 °C; lithium transference, T<sub>Li</sub><sup>+</sup> = 0.74). This enabled <strong>PT-Li</strong>s to exhibit excellent cycling performances in all-solid-state Li | LiFePO<sub>4</sub> cells with uniform Li<sup>+</sup> deposition at the Li anode interface and enhanced rate capability. The tunability and (re)processability enabled by dynamic covalent crosslinks represent a promising strategy for the development of robust all-solid-state lithium batteries.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"146 ","pages":"Article 111507"},"PeriodicalIF":17.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cationic dynamic elastomer electrolyte enabling all-solid-state lithium batteries\",\"authors\":\"Sirin Kamarulzaman ,&nbsp;Dorsasadat Safanama ,&nbsp;Zhi Yuan Lee ,&nbsp;Ming Yan Tan ,&nbsp;Carmen X.N. Lim ,&nbsp;Mavis W.X. Low ,&nbsp;Debbie H.L. Seng ,&nbsp;Sheau Wei Chien ,&nbsp;Jason Y.C. Lim ,&nbsp;Shermin S. Goh ,&nbsp;Derrick W.H. Fam\",\"doi\":\"10.1016/j.nanoen.2025.111507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Elastomeric solid polymer electrolytes (SPEs), exhibiting excellent toughness and interfacial stability with lithium (Li) metal anodes, are promising electrolytes for safe and durable all-solid-state Li-batteries. However, many elastomeric SPEs suffer from low conductivity, necessitating addition of liquid electrolytes which can compromise mechanical integrity and cause leakages. Herein, we introduce a <em><strong>fully</strong></em> solid-state elastomeric poly(triazolium) (<strong>PT-Li</strong>) SPE, which integrates the principles of poly(ionic liquid) (PIL) and covalent adaptable network (CAN) -based electrolytes to achieve enhanced performance characteristics. Like PILs, <strong>PT-Li</strong> possesses a wide electrochemical window (up to 5.2 V). Meanwhile, like CANs, dynamic triazolium crosslinking enables <strong>PT-Li</strong> to remain mechanically robust when cycling (shear loss factor ≤ 0.2 at 60 °C) while facilitating (re)processing under heat and pressure. Additionally, the cationic triazolium moieties facilitate Li<sup>+</sup> -ion mobility (ionic conductivity, σ = 3.2 × 10<sup>−5</sup> S cm<sup>−1</sup> at 30 °C, 2 × 10<sup>−4</sup> S cm<sup>−1</sup> at 60 °C; lithium transference, T<sub>Li</sub><sup>+</sup> = 0.74). This enabled <strong>PT-Li</strong>s to exhibit excellent cycling performances in all-solid-state Li | LiFePO<sub>4</sub> cells with uniform Li<sup>+</sup> deposition at the Li anode interface and enhanced rate capability. The tunability and (re)processability enabled by dynamic covalent crosslinks represent a promising strategy for the development of robust all-solid-state lithium batteries.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"146 \",\"pages\":\"Article 111507\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525008663\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525008663","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

弹性固体聚合物电解质(spe)具有优异的韧性和与锂(Li)金属阳极的界面稳定性,是安全耐用的全固态锂电池的理想电解质。然而,许多弹性体spe的导电性较低,需要添加液体电解质,这可能会损害机械完整性并导致泄漏。在此,我们介绍了一种全固态弹性聚三唑(PT-Li) SPE,它集成了聚离子液体(PIL)和共价自适应网络(CAN)电解质的原理,以实现增强的性能特征。与pil一样,PT-Li具有宽的电化学窗口(高达5.2 V)。同时,与can一样,动态三唑交联使PT-Li在循环(60°C时剪切损失因子≤0.2)时保持机械坚固性,同时便于在热和压力下进行(再)加工。此外,阳离子三唑基团有利于Li+离子的迁移(离子电导率,30℃时σ = 3.2 × 10-5 S cm-1, 60℃时σ = 2 × 10-4 S cm-1;锂转移,TLi+ = 0.74)。这使得PT-Lis在全固态Li | LiFePO4电池中表现出优异的循环性能,在Li阳极界面上均匀沉积Li+,并增强了倍率能力。动态共价交联所具有的可调性和可加工性是开发坚固的全固态锂电池的一个很有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cationic dynamic elastomer electrolyte enabling all-solid-state lithium batteries

Cationic dynamic elastomer electrolyte enabling all-solid-state lithium batteries
Elastomeric solid polymer electrolytes (SPEs), exhibiting excellent toughness and interfacial stability with lithium (Li) metal anodes, are promising electrolytes for safe and durable all-solid-state Li-batteries. However, many elastomeric SPEs suffer from low conductivity, necessitating addition of liquid electrolytes which can compromise mechanical integrity and cause leakages. Herein, we introduce a fully solid-state elastomeric poly(triazolium) (PT-Li) SPE, which integrates the principles of poly(ionic liquid) (PIL) and covalent adaptable network (CAN) -based electrolytes to achieve enhanced performance characteristics. Like PILs, PT-Li possesses a wide electrochemical window (up to 5.2 V). Meanwhile, like CANs, dynamic triazolium crosslinking enables PT-Li to remain mechanically robust when cycling (shear loss factor ≤ 0.2 at 60 °C) while facilitating (re)processing under heat and pressure. Additionally, the cationic triazolium moieties facilitate Li+ -ion mobility (ionic conductivity, σ = 3.2 × 10−5 S cm−1 at 30 °C, 2 × 10−4 S cm−1 at 60 °C; lithium transference, TLi+ = 0.74). This enabled PT-Lis to exhibit excellent cycling performances in all-solid-state Li | LiFePO4 cells with uniform Li+ deposition at the Li anode interface and enhanced rate capability. The tunability and (re)processability enabled by dynamic covalent crosslinks represent a promising strategy for the development of robust all-solid-state lithium batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信