Julia Boeyens, Jonas Glatthard, Edward Gandar, Stefan Nimmrichter, Luis A Correa and Jesús Rubio
{"title":"论对称和几何在全局量子传感中的作用","authors":"Julia Boeyens, Jonas Glatthard, Edward Gandar, Stefan Nimmrichter, Luis A Correa and Jesús Rubio","doi":"10.1088/2058-9565/ae08e1","DOIUrl":null,"url":null,"abstract":"Global quantum sensing enables parameter estimation across arbitrary ranges with a finite number of measurements. Among the various existing formulations, the Bayesian paradigm stands as a flexible approach for optimal protocol design under minimal assumptions. Within this paradigm, however, there are two fundamentally different ways to capture prior ignorance and uninformed estimation; namely, requiring invariance of the prior distribution under specific parameter transformations, or adhering to the geometry of a state space. In this paper we carefully examine the practical consequences of both the invariance-based and the geometry-based approaches, and show how to apply them in relevant examples of rate and coherence estimation in noisy settings. We find that, while the invariance-based approach often leads to simpler priors and estimators and is more broadly applicable in adaptive scenarios, the geometry-based one can lead to faster posterior convergence in a well-defined measurement setting. Crucially, by employing the notion of location-isomorphic parameters, we are able to unify the two formulations into a single practical and versatile framework for optimal global quantum sensing, detailing when and how each set of assumptions should be employed to tackle any given estimation task. We thus provide a blueprint for the design of novel high-precision quantum sensors.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"123 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the role of symmetry and geometry in global quantum sensing\",\"authors\":\"Julia Boeyens, Jonas Glatthard, Edward Gandar, Stefan Nimmrichter, Luis A Correa and Jesús Rubio\",\"doi\":\"10.1088/2058-9565/ae08e1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global quantum sensing enables parameter estimation across arbitrary ranges with a finite number of measurements. Among the various existing formulations, the Bayesian paradigm stands as a flexible approach for optimal protocol design under minimal assumptions. Within this paradigm, however, there are two fundamentally different ways to capture prior ignorance and uninformed estimation; namely, requiring invariance of the prior distribution under specific parameter transformations, or adhering to the geometry of a state space. In this paper we carefully examine the practical consequences of both the invariance-based and the geometry-based approaches, and show how to apply them in relevant examples of rate and coherence estimation in noisy settings. We find that, while the invariance-based approach often leads to simpler priors and estimators and is more broadly applicable in adaptive scenarios, the geometry-based one can lead to faster posterior convergence in a well-defined measurement setting. Crucially, by employing the notion of location-isomorphic parameters, we are able to unify the two formulations into a single practical and versatile framework for optimal global quantum sensing, detailing when and how each set of assumptions should be employed to tackle any given estimation task. We thus provide a blueprint for the design of novel high-precision quantum sensors.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ae08e1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae08e1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
On the role of symmetry and geometry in global quantum sensing
Global quantum sensing enables parameter estimation across arbitrary ranges with a finite number of measurements. Among the various existing formulations, the Bayesian paradigm stands as a flexible approach for optimal protocol design under minimal assumptions. Within this paradigm, however, there are two fundamentally different ways to capture prior ignorance and uninformed estimation; namely, requiring invariance of the prior distribution under specific parameter transformations, or adhering to the geometry of a state space. In this paper we carefully examine the practical consequences of both the invariance-based and the geometry-based approaches, and show how to apply them in relevant examples of rate and coherence estimation in noisy settings. We find that, while the invariance-based approach often leads to simpler priors and estimators and is more broadly applicable in adaptive scenarios, the geometry-based one can lead to faster posterior convergence in a well-defined measurement setting. Crucially, by employing the notion of location-isomorphic parameters, we are able to unify the two formulations into a single practical and versatile framework for optimal global quantum sensing, detailing when and how each set of assumptions should be employed to tackle any given estimation task. We thus provide a blueprint for the design of novel high-precision quantum sensors.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.