塞贝克效应促进tio2光热电性能的增强

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Meina Meng, Jun Wang, Huijun Kang
{"title":"塞贝克效应促进tio2光热电性能的增强","authors":"Meina Meng, Jun Wang, Huijun Kang","doi":"10.1016/j.jallcom.2025.184206","DOIUrl":null,"url":null,"abstract":"Photothermoelectric (PTE) materials interconvert light, heat, and electrical energy, showing significant potential for applications in the fields of energy, healthcare, and intelligent sensing. However, the research on PTE properties is still in its infancy. In particular, there are relatively few PTE materials operating in the visible light band. In this study, we investigated the photothermoelectric effect of rutile-phase Ti<sub>1-<em>x</em></sub>Nb<sub><em>x</em></sub>O<sub>2</sub> bulk materials with varying Nb doping concentrations (<em>x</em> = 0.01, 0.05, 0.14, 0.20) in the visible light band. By tuning the band structure and Seebeck coefficient (<em>S</em>), the PTE effect was achieved within the 635<!-- --> <!-- -->nm visible light band. Nb doping effectively modulated light absorption, carrier transport, and thermoelectric properties. As the Nb content increases, the absorptance at 635<!-- --> <!-- -->nm rises from 43% for Ti<sub>0.99</sub>Nb<sub>0.01</sub>O<sub>2</sub> to 53% for Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub>. However, the variation of the photothermoelectric voltage (<em>U</em><sub><em>PTE</em></sub>) is consistent with that of the Seebeck coefficient. Under 0.9<!-- --> <!-- -->mW laser irradiation, the <em>U</em><sub><em>PTE</em></sub> first decreases from 20.23 μV for Ti<sub>0.99</sub>Nb<sub>0.01</sub>O<sub>2</sub>, reaches a minimum of 17.05 μV for Ti<sub>0.86</sub>Nb<sub>0.14</sub>O<sub>2</sub>, and then increases to 17.24 μV for Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub>. Due to its small band gap (<em>E</em><sub><em>g</em></sub><em>)</em>, Ti<sub>0.86</sub>Nb<sub>0.14</sub>O<sub>2</sub> demonstrated the lowest resistance (<em>R</em>), with its Photothermoelectric power (<em>P</em><sub><em>PTE</em></sub>) being 3.2 times that of Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub> under 0.9<!-- --> <!-- -->mW illumination. Additionally, Nb doping significantly reduces the thermal conductivity (<em>κ</em>), with Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub>’s <em>κ</em> dropping to 1.7<!-- --> <!-- -->W·m<sup>-1</sup>K<sup>-1</sup>. This study not only provides a novel approach for the design of PTE materials in the visible light range but also promotes the development of self-powered sensors.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"32 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Photothermoelectric Performance of TiO₂ Promoted by the Seebeck Effect\",\"authors\":\"Meina Meng, Jun Wang, Huijun Kang\",\"doi\":\"10.1016/j.jallcom.2025.184206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photothermoelectric (PTE) materials interconvert light, heat, and electrical energy, showing significant potential for applications in the fields of energy, healthcare, and intelligent sensing. However, the research on PTE properties is still in its infancy. In particular, there are relatively few PTE materials operating in the visible light band. In this study, we investigated the photothermoelectric effect of rutile-phase Ti<sub>1-<em>x</em></sub>Nb<sub><em>x</em></sub>O<sub>2</sub> bulk materials with varying Nb doping concentrations (<em>x</em> = 0.01, 0.05, 0.14, 0.20) in the visible light band. By tuning the band structure and Seebeck coefficient (<em>S</em>), the PTE effect was achieved within the 635<!-- --> <!-- -->nm visible light band. Nb doping effectively modulated light absorption, carrier transport, and thermoelectric properties. As the Nb content increases, the absorptance at 635<!-- --> <!-- -->nm rises from 43% for Ti<sub>0.99</sub>Nb<sub>0.01</sub>O<sub>2</sub> to 53% for Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub>. However, the variation of the photothermoelectric voltage (<em>U</em><sub><em>PTE</em></sub>) is consistent with that of the Seebeck coefficient. Under 0.9<!-- --> <!-- -->mW laser irradiation, the <em>U</em><sub><em>PTE</em></sub> first decreases from 20.23 μV for Ti<sub>0.99</sub>Nb<sub>0.01</sub>O<sub>2</sub>, reaches a minimum of 17.05 μV for Ti<sub>0.86</sub>Nb<sub>0.14</sub>O<sub>2</sub>, and then increases to 17.24 μV for Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub>. Due to its small band gap (<em>E</em><sub><em>g</em></sub><em>)</em>, Ti<sub>0.86</sub>Nb<sub>0.14</sub>O<sub>2</sub> demonstrated the lowest resistance (<em>R</em>), with its Photothermoelectric power (<em>P</em><sub><em>PTE</em></sub>) being 3.2 times that of Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub> under 0.9<!-- --> <!-- -->mW illumination. Additionally, Nb doping significantly reduces the thermal conductivity (<em>κ</em>), with Ti<sub>0.8</sub>Nb<sub>0.2</sub>O<sub>2</sub>’s <em>κ</em> dropping to 1.7<!-- --> <!-- -->W·m<sup>-1</sup>K<sup>-1</sup>. This study not only provides a novel approach for the design of PTE materials in the visible light range but also promotes the development of self-powered sensors.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.184206\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184206","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光热电(PTE)材料可以转换光、热和电能,在能源、医疗保健和智能传感领域显示出巨大的应用潜力。然而,对PTE性能的研究还处于起步阶段。特别是,在可见光波段工作的PTE材料相对较少。本文研究了不同铌掺杂浓度(x = 0.01, 0.05, 0.14, 0.20)的金红石相Ti1-xNbxO2块状材料在可见光波段的光热电效应。通过调整能带结构和塞贝克系数(S),在635 nm可见光波段内实现了PTE效应。铌掺杂有效地调制了光吸收、载流子输运和热电性能。随着Nb含量的增加,635 nm处的吸光度由ti0.99 nb0.010 o2的43%增加到Ti0.8Nb0.2O2的53%。而光热电电压(UPTE)的变化与塞贝克系数的变化是一致的。在0.9 mW激光照射下,ti0.99 nb0.010 o2的UPTE先从20.23 μV下降,Ti0.86Nb0.14O2的UPTE最小值为17.05 μV, ti0.8 nb0.20 o2的UPTE先上升到17.24 μV。由于带隙小(Eg), Ti0.86Nb0.14O2表现出最低的电阻(R),在0.9 mW光照下,其光热电功率(PPTE)是ti0.8 nb0.20 o2的3.2倍。此外,Nb掺杂显著降低了导热系数(κ), Ti0.8Nb0.2O2的κ降至1.7 W·m-1K-1。该研究不仅为可见光范围内PTE材料的设计提供了新的途径,而且促进了自供电传感器的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Photothermoelectric Performance of TiO₂ Promoted by the Seebeck Effect
Photothermoelectric (PTE) materials interconvert light, heat, and electrical energy, showing significant potential for applications in the fields of energy, healthcare, and intelligent sensing. However, the research on PTE properties is still in its infancy. In particular, there are relatively few PTE materials operating in the visible light band. In this study, we investigated the photothermoelectric effect of rutile-phase Ti1-xNbxO2 bulk materials with varying Nb doping concentrations (x = 0.01, 0.05, 0.14, 0.20) in the visible light band. By tuning the band structure and Seebeck coefficient (S), the PTE effect was achieved within the 635 nm visible light band. Nb doping effectively modulated light absorption, carrier transport, and thermoelectric properties. As the Nb content increases, the absorptance at 635 nm rises from 43% for Ti0.99Nb0.01O2 to 53% for Ti0.8Nb0.2O2. However, the variation of the photothermoelectric voltage (UPTE) is consistent with that of the Seebeck coefficient. Under 0.9 mW laser irradiation, the UPTE first decreases from 20.23 μV for Ti0.99Nb0.01O2, reaches a minimum of 17.05 μV for Ti0.86Nb0.14O2, and then increases to 17.24 μV for Ti0.8Nb0.2O2. Due to its small band gap (Eg), Ti0.86Nb0.14O2 demonstrated the lowest resistance (R), with its Photothermoelectric power (PPTE) being 3.2 times that of Ti0.8Nb0.2O2 under 0.9 mW illumination. Additionally, Nb doping significantly reduces the thermal conductivity (κ), with Ti0.8Nb0.2O2’s κ dropping to 1.7 W·m-1K-1. This study not only provides a novel approach for the design of PTE materials in the visible light range but also promotes the development of self-powered sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信