Priyanka K M, Shithin Ann Varghese, Nimbagal Raghavendra Naveen
{"title":"革命性的高脂血症治疗:磁性纳米粒子为基础的输送系统。","authors":"Priyanka K M, Shithin Ann Varghese, Nimbagal Raghavendra Naveen","doi":"10.2174/0126673878383901250918195712","DOIUrl":null,"url":null,"abstract":"<p><p>Intramuscular magnetic field-driven therapies are a novel means for drug delivery, and, specifically, for the treatment of hyperlipidaemia. With this paradigm shift, the drug delivery system is intended to overcome the limitations of conventional systemic therapies and deliver the drug with precision to the site of action. Magnetic Drug Delivery Systems (MDDS) take advantage of specific properties of magnetic nanoparticles (MNPs) to increase drug localisation and penetration within tissues using external magnetic fields, that is, ensuring targeted delivery of therapeutic agents to the target tissues in a controlled and efficient manner. In this review, MDDS was applied to hyperlipidaemia management, including Orlistat-enhanced magnetic systems for lipid-lowering therapy. Green chemistry advances, biomimetic coatings and intelligent carriers are discussed in the synthesis and design of magnetic nanoparticles. Computational models, in vitro techniques, and animal studies that represent preclinical innovations are explored to demonstrate the translational potential of these systems. Long-term nanoparticle stability and biocompatibility are given special attention, and ethical, regulatory and safety concerns are critically analysed. Finally, this review explored the potential of next-generation technologies like magnetoelectric nanoparticles, AI-driven magnetic field modulation, and integration with wearable health technology to illuminate a new path towards personalised and targeted therapy.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Hyperlipidaemia Treatment: Magnetic Nanoparticle-Based Delivery Systems.\",\"authors\":\"Priyanka K M, Shithin Ann Varghese, Nimbagal Raghavendra Naveen\",\"doi\":\"10.2174/0126673878383901250918195712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intramuscular magnetic field-driven therapies are a novel means for drug delivery, and, specifically, for the treatment of hyperlipidaemia. With this paradigm shift, the drug delivery system is intended to overcome the limitations of conventional systemic therapies and deliver the drug with precision to the site of action. Magnetic Drug Delivery Systems (MDDS) take advantage of specific properties of magnetic nanoparticles (MNPs) to increase drug localisation and penetration within tissues using external magnetic fields, that is, ensuring targeted delivery of therapeutic agents to the target tissues in a controlled and efficient manner. In this review, MDDS was applied to hyperlipidaemia management, including Orlistat-enhanced magnetic systems for lipid-lowering therapy. Green chemistry advances, biomimetic coatings and intelligent carriers are discussed in the synthesis and design of magnetic nanoparticles. Computational models, in vitro techniques, and animal studies that represent preclinical innovations are explored to demonstrate the translational potential of these systems. Long-term nanoparticle stability and biocompatibility are given special attention, and ethical, regulatory and safety concerns are critically analysed. Finally, this review explored the potential of next-generation technologies like magnetoelectric nanoparticles, AI-driven magnetic field modulation, and integration with wearable health technology to illuminate a new path towards personalised and targeted therapy.</p>\",\"PeriodicalId\":94352,\"journal\":{\"name\":\"Recent advances in drug delivery and formulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent advances in drug delivery and formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126673878383901250918195712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878383901250918195712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revolutionizing Hyperlipidaemia Treatment: Magnetic Nanoparticle-Based Delivery Systems.
Intramuscular magnetic field-driven therapies are a novel means for drug delivery, and, specifically, for the treatment of hyperlipidaemia. With this paradigm shift, the drug delivery system is intended to overcome the limitations of conventional systemic therapies and deliver the drug with precision to the site of action. Magnetic Drug Delivery Systems (MDDS) take advantage of specific properties of magnetic nanoparticles (MNPs) to increase drug localisation and penetration within tissues using external magnetic fields, that is, ensuring targeted delivery of therapeutic agents to the target tissues in a controlled and efficient manner. In this review, MDDS was applied to hyperlipidaemia management, including Orlistat-enhanced magnetic systems for lipid-lowering therapy. Green chemistry advances, biomimetic coatings and intelligent carriers are discussed in the synthesis and design of magnetic nanoparticles. Computational models, in vitro techniques, and animal studies that represent preclinical innovations are explored to demonstrate the translational potential of these systems. Long-term nanoparticle stability and biocompatibility are given special attention, and ethical, regulatory and safety concerns are critically analysed. Finally, this review explored the potential of next-generation technologies like magnetoelectric nanoparticles, AI-driven magnetic field modulation, and integration with wearable health technology to illuminate a new path towards personalised and targeted therapy.