{"title":"1.5 t与3.0 t磁共振成像转换一致性的比较研究。","authors":"Jie Li, Yujie Zhang, Jingang Chen, Weiqi Liu, Yizhe Wang, Zhuozhao Zheng","doi":"10.2174/0115734056383931250919073319","DOIUrl":null,"url":null,"abstract":"<p><strong>Purposes: </strong>Deep learning methods were employed to perform harmonization analysis on whole-brain scans obtained from 1.5-T and 3.0-T scanners, aiming to increase comparability between different magnetic resonance imaging (MRI) scanners.</p><p><strong>Methods: </strong>Thirty patients evaluated in Beijing Tsinghua Changgung Hospital between August 2020 and March 2023 were included in this retrospective study. Three MRI scanners were used to scan patients, and automated brain image segmentation was performed to obtain volumes of different brain regions. Differences in regional volumes across scanners were analyzed using repeated-measures analysis of variance. For regions showing significant differences, super-resolution deep learning was applied to enhance consistency, with subsequent comparison of results. For regions still exhibiting differences, the Intraclass Correlation Coefficient (ICC) was calculated and the consistency was evaluated using Cicchetti's criteria.</p><p><strong>Results: </strong>Average whole-brain volumes for different scanners among patients were 1152.36mm<sup>3</sup> (SD = 95.34), 1136.92mm<sup>3</sup> (SD = 108.21), and 1184.00mm<sup>3</sup> (SD = 102.78), respectively. Analysis revealed significant variations in all 12 brain regions (p<0.05), indicating a lack of comparability among imaging results obtained from different magnetic field strengths. After deep learning-based consistency optimization, most brain regions showed no significant differences, except for six regions where differences remained significant. Among these, three regions demonstrated ICC values of 0.868 (95%CI 0.771-0.931), 0.776 (95%CI 0.634-0.877), and 0.893 (95%CI 0.790-0.947), indicating high reproducibility and comparability.</p><p><strong>Conclusion: </strong>This study employed a novel machine learning approach that significantly improved the comparability of imaging results from patients using different magnetic field strengths and various models of MRI scanners. Furthermore, it enhanced the consistency of central nervous system image segmentation.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Consistency on 1.5-T to 3.0-T Magnetic Resonance Imaging Conversion.\",\"authors\":\"Jie Li, Yujie Zhang, Jingang Chen, Weiqi Liu, Yizhe Wang, Zhuozhao Zheng\",\"doi\":\"10.2174/0115734056383931250919073319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purposes: </strong>Deep learning methods were employed to perform harmonization analysis on whole-brain scans obtained from 1.5-T and 3.0-T scanners, aiming to increase comparability between different magnetic resonance imaging (MRI) scanners.</p><p><strong>Methods: </strong>Thirty patients evaluated in Beijing Tsinghua Changgung Hospital between August 2020 and March 2023 were included in this retrospective study. Three MRI scanners were used to scan patients, and automated brain image segmentation was performed to obtain volumes of different brain regions. Differences in regional volumes across scanners were analyzed using repeated-measures analysis of variance. For regions showing significant differences, super-resolution deep learning was applied to enhance consistency, with subsequent comparison of results. For regions still exhibiting differences, the Intraclass Correlation Coefficient (ICC) was calculated and the consistency was evaluated using Cicchetti's criteria.</p><p><strong>Results: </strong>Average whole-brain volumes for different scanners among patients were 1152.36mm<sup>3</sup> (SD = 95.34), 1136.92mm<sup>3</sup> (SD = 108.21), and 1184.00mm<sup>3</sup> (SD = 102.78), respectively. Analysis revealed significant variations in all 12 brain regions (p<0.05), indicating a lack of comparability among imaging results obtained from different magnetic field strengths. After deep learning-based consistency optimization, most brain regions showed no significant differences, except for six regions where differences remained significant. Among these, three regions demonstrated ICC values of 0.868 (95%CI 0.771-0.931), 0.776 (95%CI 0.634-0.877), and 0.893 (95%CI 0.790-0.947), indicating high reproducibility and comparability.</p><p><strong>Conclusion: </strong>This study employed a novel machine learning approach that significantly improved the comparability of imaging results from patients using different magnetic field strengths and various models of MRI scanners. Furthermore, it enhanced the consistency of central nervous system image segmentation.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056383931250919073319\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056383931250919073319","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A Comparative Study of Consistency on 1.5-T to 3.0-T Magnetic Resonance Imaging Conversion.
Purposes: Deep learning methods were employed to perform harmonization analysis on whole-brain scans obtained from 1.5-T and 3.0-T scanners, aiming to increase comparability between different magnetic resonance imaging (MRI) scanners.
Methods: Thirty patients evaluated in Beijing Tsinghua Changgung Hospital between August 2020 and March 2023 were included in this retrospective study. Three MRI scanners were used to scan patients, and automated brain image segmentation was performed to obtain volumes of different brain regions. Differences in regional volumes across scanners were analyzed using repeated-measures analysis of variance. For regions showing significant differences, super-resolution deep learning was applied to enhance consistency, with subsequent comparison of results. For regions still exhibiting differences, the Intraclass Correlation Coefficient (ICC) was calculated and the consistency was evaluated using Cicchetti's criteria.
Results: Average whole-brain volumes for different scanners among patients were 1152.36mm3 (SD = 95.34), 1136.92mm3 (SD = 108.21), and 1184.00mm3 (SD = 102.78), respectively. Analysis revealed significant variations in all 12 brain regions (p<0.05), indicating a lack of comparability among imaging results obtained from different magnetic field strengths. After deep learning-based consistency optimization, most brain regions showed no significant differences, except for six regions where differences remained significant. Among these, three regions demonstrated ICC values of 0.868 (95%CI 0.771-0.931), 0.776 (95%CI 0.634-0.877), and 0.893 (95%CI 0.790-0.947), indicating high reproducibility and comparability.
Conclusion: This study employed a novel machine learning approach that significantly improved the comparability of imaging results from patients using different magnetic field strengths and various models of MRI scanners. Furthermore, it enhanced the consistency of central nervous system image segmentation.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.