{"title":"一种新的靶向MDM2-p53通路的β-碳碱生物碱衍生物抑制结直肠癌的进展。","authors":"Fanbin Zeng, Cheng Chen, Zhanwei Fu, Haihui Huang, Wenqiang Cui, Yuanyuan Zhou, Yanjie Kong, Xia Liu, Zhiru Xu, Shouguo Wang, Tian Xiao, Houjun Xia","doi":"10.1007/s13402-025-01111-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Colorectal cancer (CRC) remains a major global health challenge, necessitating novel therapeutic approaches. β-carboline alkaloids, natural compounds with anticancer properties, have shown potential to inhibit cancer cell viability. Here, we synthesized β-carboline derivatives and explored their potential as CRC inhibitors.</p><p><strong>Methods: </strong>The IC<sub>50</sub> values of β-carboline derivatives were determined by cell viability assay. The biological effects of the leading candidate were evaluated via cell cycle analysis, proliferation assay, colony formation, apoptosis assay, and reactive oxygen species detection. Mechanistic studies were performed using transcriptomic and proteomic analysis, validated by immunoblotting, pulldown assay, cycloheximide-chasing assay, and co-immunoprecipitation. An in vivo CRC xenograft model was used to assess the efficacy of the leading candidate.</p><p><strong>Results: </strong>Z-7 was identified as the leading candidate due to its ability to induce apoptosis and cell cycle arrest in CRC cells. Transcriptomic and proteomic data revealed that Z-7 activated the p53 signaling pathway in p53 wild-type CRC by binding to MDM2 at the RING domain, and inhibiting the E3 ligase activity of MDM2, leading to the reduction of p53 ubiquitination. In vivo study showed Z-7 treatment elevated p53 expression and significantly suppressed tumor growth in xenograft models.</p><p><strong>Conclusion: </strong>Z-7 is a promising candidate for CRC therapy, particularly in patients with functional p53 and elevated MDM2, warranting further clinical evaluation.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel β-carboline alkaloid derivative targeting MDM2-p53 pathway suppresses colorectal cancer progression.\",\"authors\":\"Fanbin Zeng, Cheng Chen, Zhanwei Fu, Haihui Huang, Wenqiang Cui, Yuanyuan Zhou, Yanjie Kong, Xia Liu, Zhiru Xu, Shouguo Wang, Tian Xiao, Houjun Xia\",\"doi\":\"10.1007/s13402-025-01111-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Colorectal cancer (CRC) remains a major global health challenge, necessitating novel therapeutic approaches. β-carboline alkaloids, natural compounds with anticancer properties, have shown potential to inhibit cancer cell viability. Here, we synthesized β-carboline derivatives and explored their potential as CRC inhibitors.</p><p><strong>Methods: </strong>The IC<sub>50</sub> values of β-carboline derivatives were determined by cell viability assay. The biological effects of the leading candidate were evaluated via cell cycle analysis, proliferation assay, colony formation, apoptosis assay, and reactive oxygen species detection. Mechanistic studies were performed using transcriptomic and proteomic analysis, validated by immunoblotting, pulldown assay, cycloheximide-chasing assay, and co-immunoprecipitation. An in vivo CRC xenograft model was used to assess the efficacy of the leading candidate.</p><p><strong>Results: </strong>Z-7 was identified as the leading candidate due to its ability to induce apoptosis and cell cycle arrest in CRC cells. Transcriptomic and proteomic data revealed that Z-7 activated the p53 signaling pathway in p53 wild-type CRC by binding to MDM2 at the RING domain, and inhibiting the E3 ligase activity of MDM2, leading to the reduction of p53 ubiquitination. In vivo study showed Z-7 treatment elevated p53 expression and significantly suppressed tumor growth in xenograft models.</p><p><strong>Conclusion: </strong>Z-7 is a promising candidate for CRC therapy, particularly in patients with functional p53 and elevated MDM2, warranting further clinical evaluation.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-025-01111-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01111-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A novel β-carboline alkaloid derivative targeting MDM2-p53 pathway suppresses colorectal cancer progression.
Purpose: Colorectal cancer (CRC) remains a major global health challenge, necessitating novel therapeutic approaches. β-carboline alkaloids, natural compounds with anticancer properties, have shown potential to inhibit cancer cell viability. Here, we synthesized β-carboline derivatives and explored their potential as CRC inhibitors.
Methods: The IC50 values of β-carboline derivatives were determined by cell viability assay. The biological effects of the leading candidate were evaluated via cell cycle analysis, proliferation assay, colony formation, apoptosis assay, and reactive oxygen species detection. Mechanistic studies were performed using transcriptomic and proteomic analysis, validated by immunoblotting, pulldown assay, cycloheximide-chasing assay, and co-immunoprecipitation. An in vivo CRC xenograft model was used to assess the efficacy of the leading candidate.
Results: Z-7 was identified as the leading candidate due to its ability to induce apoptosis and cell cycle arrest in CRC cells. Transcriptomic and proteomic data revealed that Z-7 activated the p53 signaling pathway in p53 wild-type CRC by binding to MDM2 at the RING domain, and inhibiting the E3 ligase activity of MDM2, leading to the reduction of p53 ubiquitination. In vivo study showed Z-7 treatment elevated p53 expression and significantly suppressed tumor growth in xenograft models.
Conclusion: Z-7 is a promising candidate for CRC therapy, particularly in patients with functional p53 and elevated MDM2, warranting further clinical evaluation.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.