具有非线性入射和双重曝光的SIRS模型的全局分岔动力学。

IF 2.3 4区 数学 Q2 BIOLOGY
Yancong Xu, Yue Yang, Malay Banerjee, Libin Rong
{"title":"具有非线性入射和双重曝光的SIRS模型的全局分岔动力学。","authors":"Yancong Xu, Yue Yang, Malay Banerjee, Libin Rong","doi":"10.1007/s00285-025-02289-8","DOIUrl":null,"url":null,"abstract":"<p><p>Mathematical modeling is essential for understanding infectious disease dynamics and guiding public health strategies. We study the global dynamics of a susceptible-infectious-recovered-susceptible (SIRS) model with a generalized nonlinear incidence function, revealing a rich array of bifurcation phenomena, including saddle-node, cusp, forward and backward bifurcations, Bogdanov-Takens bifurcations, saddle-node bifurcation of limit cycles, subcritical and supercritical Hopf bifurcations, generalized Hopf bifurcations, homoclinic and degenerate homoclinic bifurcations, as well as isola bifurcation. Using normal form theory, we show that the Hopf bifurcation reaches codimension three, resulting in up to three small-amplitude limit cycles. The involvement of the recovered population enables coexistence of these limit cycles, leading to bistable and tristable dynamics. We employ a one-step transformation method to analyze codimension two and three Bogdanov-Takens bifurcations, confirming a maximum codimension of three. In particular, we identify isolas of limit cycles in an SIRS model involving double exposure, introducing a mechanism for generating limit cycles centered on the isola. The findings may have important public health implications, highlighting how nonlinearities in transmission and immunity can produce recurrent outbreaks or persistent infection despite interventions. The existence of multiple limit cycles suggests that small changes in transmission rates or immune response could cause abrupt shifts in outbreak patterns, emphasizing the need for adaptive and flexible intervention strategies.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 5","pages":"52"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global bifurcation dynamics in an SIRS model with nonlinear incidence and double exposure.\",\"authors\":\"Yancong Xu, Yue Yang, Malay Banerjee, Libin Rong\",\"doi\":\"10.1007/s00285-025-02289-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mathematical modeling is essential for understanding infectious disease dynamics and guiding public health strategies. We study the global dynamics of a susceptible-infectious-recovered-susceptible (SIRS) model with a generalized nonlinear incidence function, revealing a rich array of bifurcation phenomena, including saddle-node, cusp, forward and backward bifurcations, Bogdanov-Takens bifurcations, saddle-node bifurcation of limit cycles, subcritical and supercritical Hopf bifurcations, generalized Hopf bifurcations, homoclinic and degenerate homoclinic bifurcations, as well as isola bifurcation. Using normal form theory, we show that the Hopf bifurcation reaches codimension three, resulting in up to three small-amplitude limit cycles. The involvement of the recovered population enables coexistence of these limit cycles, leading to bistable and tristable dynamics. We employ a one-step transformation method to analyze codimension two and three Bogdanov-Takens bifurcations, confirming a maximum codimension of three. In particular, we identify isolas of limit cycles in an SIRS model involving double exposure, introducing a mechanism for generating limit cycles centered on the isola. The findings may have important public health implications, highlighting how nonlinearities in transmission and immunity can produce recurrent outbreaks or persistent infection despite interventions. The existence of multiple limit cycles suggests that small changes in transmission rates or immune response could cause abrupt shifts in outbreak patterns, emphasizing the need for adaptive and flexible intervention strategies.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 5\",\"pages\":\"52\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02289-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02289-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

数学建模对于理解传染病动态和指导公共卫生战略至关重要。本文研究了一类具有广义非线性关联函数的易感-感染-恢复-易感(SIRS)模型的全局动力学,揭示了一系列丰富的分岔现象,包括鞍节点分岔、尖端分岔、正向分岔和后向分岔、Bogdanov-Takens分岔、极限环的鞍节点分岔、亚临界和超临界Hopf分岔、广义Hopf分岔、同斜分岔和简并同斜分岔以及孤立分岔。利用范式理论,我们证明了Hopf分岔达到余维三,导致最多三个小振幅极限环。恢复种群的参与使这些极限环共存,导致双稳态和三稳态动力学。我们采用一步变换方法分析了余维2和三个波格丹诺夫- takens分岔,证实了最大余维为3。特别是,我们在涉及双重暴露的SIRS模型中确定了极限环的隔离点,并引入了以隔离点为中心产生极限环的机制。这些发现可能具有重要的公共卫生意义,强调了尽管采取了干预措施,但传播和免疫的非线性如何产生复发性暴发或持续性感染。多个极限环的存在表明,传播率或免疫反应的微小变化可能导致暴发模式的突然转变,强调需要适应性和灵活的干预战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global bifurcation dynamics in an SIRS model with nonlinear incidence and double exposure.

Mathematical modeling is essential for understanding infectious disease dynamics and guiding public health strategies. We study the global dynamics of a susceptible-infectious-recovered-susceptible (SIRS) model with a generalized nonlinear incidence function, revealing a rich array of bifurcation phenomena, including saddle-node, cusp, forward and backward bifurcations, Bogdanov-Takens bifurcations, saddle-node bifurcation of limit cycles, subcritical and supercritical Hopf bifurcations, generalized Hopf bifurcations, homoclinic and degenerate homoclinic bifurcations, as well as isola bifurcation. Using normal form theory, we show that the Hopf bifurcation reaches codimension three, resulting in up to three small-amplitude limit cycles. The involvement of the recovered population enables coexistence of these limit cycles, leading to bistable and tristable dynamics. We employ a one-step transformation method to analyze codimension two and three Bogdanov-Takens bifurcations, confirming a maximum codimension of three. In particular, we identify isolas of limit cycles in an SIRS model involving double exposure, introducing a mechanism for generating limit cycles centered on the isola. The findings may have important public health implications, highlighting how nonlinearities in transmission and immunity can produce recurrent outbreaks or persistent infection despite interventions. The existence of multiple limit cycles suggests that small changes in transmission rates or immune response could cause abrupt shifts in outbreak patterns, emphasizing the need for adaptive and flexible intervention strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信