{"title":"未知情况和环境的元认知(MUSE)。","authors":"Rodolfo Valiente, Praveen K Pilly","doi":"10.1016/j.neunet.2025.108131","DOIUrl":null,"url":null,"abstract":"<p><p>Metacognition, defined as the awareness and regulation of one's cognitive processes, is central to human adaptability in unknown situations. In contrast, current autonomous agents often struggle in novel environments due to their limited capacity for adaptation. We hypothesize that metacognition is a critical missing ingredient in autonomous agents for the cognitive flexibility needed to tackle unfamiliar challenges. Given the broad scope of metacognitive abilities, we focus on competence awareness and strategy selection. To this end, we propose the Metacognition for Unknown Situations and Environments (MUSE) framework to integrate metacognitive processes of self-assessment and self-regulation into autonomous agents. We present two implementations of MUSE: one based on world modeling and another leveraging large language models (LLMs). Our system continually learns to assess its competence on a given task and uses this self-assessment to guide iterative cycles of strategy selection. MUSE agents demonstrate high competence awareness and significant improvements in self-regulation for solving novel, out-of-distribution tasks more effectively compared to model-based reinforcement learning and purely prompt-based LLM agent approaches. This work highlights the promise of approaches inspired by cognitive and neural systems in enabling autonomous agents to adapt to new environments while mitigating the heavy reliance on extensive training data and large models for the current models.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"108131"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metacognition for Unknown Situations and Environments (MUSE).\",\"authors\":\"Rodolfo Valiente, Praveen K Pilly\",\"doi\":\"10.1016/j.neunet.2025.108131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metacognition, defined as the awareness and regulation of one's cognitive processes, is central to human adaptability in unknown situations. In contrast, current autonomous agents often struggle in novel environments due to their limited capacity for adaptation. We hypothesize that metacognition is a critical missing ingredient in autonomous agents for the cognitive flexibility needed to tackle unfamiliar challenges. Given the broad scope of metacognitive abilities, we focus on competence awareness and strategy selection. To this end, we propose the Metacognition for Unknown Situations and Environments (MUSE) framework to integrate metacognitive processes of self-assessment and self-regulation into autonomous agents. We present two implementations of MUSE: one based on world modeling and another leveraging large language models (LLMs). Our system continually learns to assess its competence on a given task and uses this self-assessment to guide iterative cycles of strategy selection. MUSE agents demonstrate high competence awareness and significant improvements in self-regulation for solving novel, out-of-distribution tasks more effectively compared to model-based reinforcement learning and purely prompt-based LLM agent approaches. This work highlights the promise of approaches inspired by cognitive and neural systems in enabling autonomous agents to adapt to new environments while mitigating the heavy reliance on extensive training data and large models for the current models.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"194 \",\"pages\":\"108131\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2025.108131\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.108131","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Metacognition for Unknown Situations and Environments (MUSE).
Metacognition, defined as the awareness and regulation of one's cognitive processes, is central to human adaptability in unknown situations. In contrast, current autonomous agents often struggle in novel environments due to their limited capacity for adaptation. We hypothesize that metacognition is a critical missing ingredient in autonomous agents for the cognitive flexibility needed to tackle unfamiliar challenges. Given the broad scope of metacognitive abilities, we focus on competence awareness and strategy selection. To this end, we propose the Metacognition for Unknown Situations and Environments (MUSE) framework to integrate metacognitive processes of self-assessment and self-regulation into autonomous agents. We present two implementations of MUSE: one based on world modeling and another leveraging large language models (LLMs). Our system continually learns to assess its competence on a given task and uses this self-assessment to guide iterative cycles of strategy selection. MUSE agents demonstrate high competence awareness and significant improvements in self-regulation for solving novel, out-of-distribution tasks more effectively compared to model-based reinforcement learning and purely prompt-based LLM agent approaches. This work highlights the promise of approaches inspired by cognitive and neural systems in enabling autonomous agents to adapt to new environments while mitigating the heavy reliance on extensive training data and large models for the current models.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.