32个LLM在材料科学和化学中的应用实例:走向自动化、助理、代理和加速科学发现。

IF 4.6 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Machine Learning Science and Technology Pub Date : 2025-09-30 Epub Date: 2025-09-29 DOI:10.1088/2632-2153/ae011a
Yoel Zimmermann, Adib Bazgir, Alexander Al-Feghali, Mehrad Ansari, Joshua Bocarsly, L Catherine Brinson, Yuan Chiang, Defne Circi, Min-Hsueh Chiu, Nathan Daelman, Matthew L Evans, Abhijeet S Gangan, Janine George, Hassan Harb, Ghazal Khalighinejad, Sartaaj Takrim Khan, Sascha Klawohn, Magdalena Lederbauer, Soroush Mahjoubi, Bernadette Mohr, Seyed Mohamad Moosavi, Aakash Naik, Aleyna Beste Ozhan, Dieter Plessers, Aritra Roy, Fabian Schöppach, Philippe Schwaller, Carla Terboven, Katharina Ueltzen, Yue Wu, Shang Zhu, Jan Janssen, Calvin Li, Ian Foster, Ben Blaiszik
{"title":"32个LLM在材料科学和化学中的应用实例:走向自动化、助理、代理和加速科学发现。","authors":"Yoel Zimmermann, Adib Bazgir, Alexander Al-Feghali, Mehrad Ansari, Joshua Bocarsly, L Catherine Brinson, Yuan Chiang, Defne Circi, Min-Hsueh Chiu, Nathan Daelman, Matthew L Evans, Abhijeet S Gangan, Janine George, Hassan Harb, Ghazal Khalighinejad, Sartaaj Takrim Khan, Sascha Klawohn, Magdalena Lederbauer, Soroush Mahjoubi, Bernadette Mohr, Seyed Mohamad Moosavi, Aakash Naik, Aleyna Beste Ozhan, Dieter Plessers, Aritra Roy, Fabian Schöppach, Philippe Schwaller, Carla Terboven, Katharina Ueltzen, Yue Wu, Shang Zhu, Jan Janssen, Calvin Li, Ian Foster, Ben Blaiszik","doi":"10.1088/2632-2153/ae011a","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 32 total projects developed during the second annual LLM hackathon for applications in materials science and chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.</p>","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"6 3","pages":"030701"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492978/pdf/","citationCount":"0","resultStr":"{\"title\":\"32 examples of LLM applications in materials science and chemistry: towards automation, assistants, agents, and accelerated scientific discovery.\",\"authors\":\"Yoel Zimmermann, Adib Bazgir, Alexander Al-Feghali, Mehrad Ansari, Joshua Bocarsly, L Catherine Brinson, Yuan Chiang, Defne Circi, Min-Hsueh Chiu, Nathan Daelman, Matthew L Evans, Abhijeet S Gangan, Janine George, Hassan Harb, Ghazal Khalighinejad, Sartaaj Takrim Khan, Sascha Klawohn, Magdalena Lederbauer, Soroush Mahjoubi, Bernadette Mohr, Seyed Mohamad Moosavi, Aakash Naik, Aleyna Beste Ozhan, Dieter Plessers, Aritra Roy, Fabian Schöppach, Philippe Schwaller, Carla Terboven, Katharina Ueltzen, Yue Wu, Shang Zhu, Jan Janssen, Calvin Li, Ian Foster, Ben Blaiszik\",\"doi\":\"10.1088/2632-2153/ae011a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 32 total projects developed during the second annual LLM hackathon for applications in materials science and chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.</p>\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"6 3\",\"pages\":\"030701\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ae011a\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ae011a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)正在重塑材料科学和化学研究的许多方面,使分子性质预测、材料设计、科学自动化、知识提取等方面取得进展。最近的发展表明,最新的一类模型能够集成结构化和非结构化数据,协助假设生成,并简化研究工作流程。为了探索LLM能力在整个研究生命周期中的前沿,我们通过第二届年度LLM黑客马拉松期间开发的32个项目来审查LLM的应用,这些项目用于材料科学和化学的应用,这是一项全球性的混合活动。这些项目涵盖七个重点研究领域:(1)分子和材料性质预测;(2)分子和材料设计;(3)自动化和新型界面;(4)科学交流与教育;(5)研究数据管理与自动化;(6)假设生成与评估;(7)科学文献的知识提取与推理。总的来说,这些应用程序说明了llm如何作为通用的预测模型、领域特定工具的快速原型设计平台等等。特别是,通过添加推理、额外的训练数据和新技术,开源和专有LLM性能的改进扩展了有效性,特别是在低数据环境和跨学科研究中。随着法学硕士的不断进步,它们与科学工作流程的整合带来了新的机遇和新的挑战,需要持续的探索、不断的改进和进一步的研究来解决可靠性、可解释性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
32 examples of LLM applications in materials science and chemistry: towards automation, assistants, agents, and accelerated scientific discovery.

Large language models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 32 total projects developed during the second annual LLM hackathon for applications in materials science and chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信