Catherine Sekyerebea Diko, Haodong Shi, Wang Lei, Zichen Zhu, Yining Liu, Maurice Abitonze, Wendolina Martina Micha Obono, Yimin Zhu, Yan Yang, Zhongshuai Wu, Jian Liu
{"title":"锡前驱体在调节TMS@carbon蛋黄壳纳米球以提高硫利用率中的作用。","authors":"Catherine Sekyerebea Diko, Haodong Shi, Wang Lei, Zichen Zhu, Yining Liu, Maurice Abitonze, Wendolina Martina Micha Obono, Yimin Zhu, Yan Yang, Zhongshuai Wu, Jian Liu","doi":"10.1039/d5na00772k","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-sulfur (Li-S) batteries are promising candidates for future energy storage systems because of their abundant theoretical capacity and low cost. However, challenges such as polysulfide shuttle effects and poor conductivity hinder their practical use. Yolk-shell structured nanocomposites offer a promising avenue for addressing the challenges in Li-S batteries. Herein, one-pot hydrothermal synthesis of yolk-shell SnS<sub>2</sub>@MoS<sub>2</sub>@C nanospheres is reported, where the inclusion of the tin precursor plays a pivotal role in tuning these unique nanostructures. The resulting architecture provides enlarged interlayer spacing, internal voids, and robust stability, facilitating efficient ion transport and volume buffering. Electrochemical evaluations reveal a high initial capacity of 1445 mA h g<sup>-1</sup> at 0.1C, with excellent rate-performance, retaining 802 mA h g<sup>-1</sup> at 3C. Remarkably, at 1C, the capacity increases from 1044.8 to 1114.6 mA h g<sup>-1</sup> after 600 cycles. These results highlight the structural and functional advantages of SnS<sub>2</sub>-driven yolk-shell architectures for next-generation Li-S cathodes.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490037/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of the tin precursor in tuning TMS@carbon yolk-shell nanospheres for enhanced sulfur utilization.\",\"authors\":\"Catherine Sekyerebea Diko, Haodong Shi, Wang Lei, Zichen Zhu, Yining Liu, Maurice Abitonze, Wendolina Martina Micha Obono, Yimin Zhu, Yan Yang, Zhongshuai Wu, Jian Liu\",\"doi\":\"10.1039/d5na00772k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lithium-sulfur (Li-S) batteries are promising candidates for future energy storage systems because of their abundant theoretical capacity and low cost. However, challenges such as polysulfide shuttle effects and poor conductivity hinder their practical use. Yolk-shell structured nanocomposites offer a promising avenue for addressing the challenges in Li-S batteries. Herein, one-pot hydrothermal synthesis of yolk-shell SnS<sub>2</sub>@MoS<sub>2</sub>@C nanospheres is reported, where the inclusion of the tin precursor plays a pivotal role in tuning these unique nanostructures. The resulting architecture provides enlarged interlayer spacing, internal voids, and robust stability, facilitating efficient ion transport and volume buffering. Electrochemical evaluations reveal a high initial capacity of 1445 mA h g<sup>-1</sup> at 0.1C, with excellent rate-performance, retaining 802 mA h g<sup>-1</sup> at 3C. Remarkably, at 1C, the capacity increases from 1044.8 to 1114.6 mA h g<sup>-1</sup> after 600 cycles. These results highlight the structural and functional advantages of SnS<sub>2</sub>-driven yolk-shell architectures for next-generation Li-S cathodes.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490037/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00772k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00772k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
锂硫电池因其丰富的理论容量和低廉的成本而成为未来储能系统的理想选择。然而,诸如多硫化物穿梭效应和导电性差等挑战阻碍了它们的实际应用。蛋黄壳结构纳米复合材料为解决锂-s电池的挑战提供了一条有前途的途径。本文报道了一锅水热合成蛋黄壳SnS2@MoS2@C纳米球,其中锡前驱体的包裹在调整这些独特的纳米结构中起着关键作用。由此产生的结构提供了更大的层间距、内部空隙和强大的稳定性,促进了高效的离子传输和体积缓冲。电化学评价表明,在0.1C条件下,电池的初始容量高达1445 mA h g-1,在3C条件下,电池的倍率性能优异,可保持802 mA h g-1。值得注意的是,在1C下,经过600次循环后,容量从1044.8 mA h -1增加到1114.6 mA h -1。这些结果突出了sns2驱动的蛋黄壳结构在下一代锂离子阴极的结构和功能上的优势。
The role of the tin precursor in tuning TMS@carbon yolk-shell nanospheres for enhanced sulfur utilization.
Lithium-sulfur (Li-S) batteries are promising candidates for future energy storage systems because of their abundant theoretical capacity and low cost. However, challenges such as polysulfide shuttle effects and poor conductivity hinder their practical use. Yolk-shell structured nanocomposites offer a promising avenue for addressing the challenges in Li-S batteries. Herein, one-pot hydrothermal synthesis of yolk-shell SnS2@MoS2@C nanospheres is reported, where the inclusion of the tin precursor plays a pivotal role in tuning these unique nanostructures. The resulting architecture provides enlarged interlayer spacing, internal voids, and robust stability, facilitating efficient ion transport and volume buffering. Electrochemical evaluations reveal a high initial capacity of 1445 mA h g-1 at 0.1C, with excellent rate-performance, retaining 802 mA h g-1 at 3C. Remarkably, at 1C, the capacity increases from 1044.8 to 1114.6 mA h g-1 after 600 cycles. These results highlight the structural and functional advantages of SnS2-driven yolk-shell architectures for next-generation Li-S cathodes.