定量数字病理学揭示前列腺癌肿瘤侵袭性的形态学和分子相关性。

IF 1.9 4区 医学 Q3 UROLOGY & NEPHROLOGY
Francisco Araujo, Guilherme Velozo, Juliana Cordeiro, Aline Ramos, Samuel Ferreira, Laura Cardoso, Vania Melo, Fábio Távora
{"title":"定量数字病理学揭示前列腺癌肿瘤侵袭性的形态学和分子相关性。","authors":"Francisco Araujo, Guilherme Velozo, Juliana Cordeiro, Aline Ramos, Samuel Ferreira, Laura Cardoso, Vania Melo, Fábio Távora","doi":"10.1007/s11255-025-04806-6","DOIUrl":null,"url":null,"abstract":"<p><p>Digital pathology enables objective evaluation of prognostic markers in prostate cancer through integrated morphological and molecular analysis. In this study, 72 radical prostatectomy samples were analyzed using tissue microarrays and whole-slide imaging, with tumor regions annotated by pathologists and quantified in QuPath for PTEN, Ki-67, ATM, CD8, and key histological features. PTEN quantification showed high variability and limited predictive value (AUC <math><mo>=</mo></math> 0.61). Cribriform morphology was significantly associated with advanced pathological stage, non-organ-confined tumors, and a profile of aggressiveness markers, whereas CD8 <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>+</mo></mmultiscripts> </math> density did not correlate, supporting an \"immune-cold\" phenotype. Quantitative cribriform area did not add prognostic value. A logistic regression model combining Gleason pattern 4 percentage and ATM expression predicted cribriform morphology with good accuracy (AUC <math><mo>=</mo></math> 0.79). These results highlight the potential of digital pathology to refine risk stratification and identify high-risk morpho-molecular features in prostate cancer.</p>","PeriodicalId":14454,"journal":{"name":"International Urology and Nephrology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative digital pathology reveals morphological and molecular correlates of tumor aggressiveness in prostate cancer.\",\"authors\":\"Francisco Araujo, Guilherme Velozo, Juliana Cordeiro, Aline Ramos, Samuel Ferreira, Laura Cardoso, Vania Melo, Fábio Távora\",\"doi\":\"10.1007/s11255-025-04806-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital pathology enables objective evaluation of prognostic markers in prostate cancer through integrated morphological and molecular analysis. In this study, 72 radical prostatectomy samples were analyzed using tissue microarrays and whole-slide imaging, with tumor regions annotated by pathologists and quantified in QuPath for PTEN, Ki-67, ATM, CD8, and key histological features. PTEN quantification showed high variability and limited predictive value (AUC <math><mo>=</mo></math> 0.61). Cribriform morphology was significantly associated with advanced pathological stage, non-organ-confined tumors, and a profile of aggressiveness markers, whereas CD8 <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>+</mo></mmultiscripts> </math> density did not correlate, supporting an \\\"immune-cold\\\" phenotype. Quantitative cribriform area did not add prognostic value. A logistic regression model combining Gleason pattern 4 percentage and ATM expression predicted cribriform morphology with good accuracy (AUC <math><mo>=</mo></math> 0.79). These results highlight the potential of digital pathology to refine risk stratification and identify high-risk morpho-molecular features in prostate cancer.</p>\",\"PeriodicalId\":14454,\"journal\":{\"name\":\"International Urology and Nephrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Urology and Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11255-025-04806-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11255-025-04806-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

数字病理学能够通过综合形态学和分子分析客观评价前列腺癌的预后标志物。在这项研究中,我们使用组织微阵列和全切片成像技术分析了72例根治性前列腺切除术样本,病理学家对肿瘤区域进行了注释,并在QuPath中量化了PTEN、Ki-67、ATM、CD8和关键组织学特征。PTEN量化显示高变异性和有限的预测价值(AUC = 0.61)。筛状形态与晚期病理分期、非器官局限性肿瘤和侵袭性标志物显著相关,而CD8 +密度不相关,支持“免疫冷”表型。定量筛状面积不增加预后价值。结合Gleason模式4百分比和ATM表达的logistic回归模型预测筛网形态具有较好的准确性(AUC = 0.79)。这些结果突出了数字病理学在完善前列腺癌风险分层和识别高危形态分子特征方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative digital pathology reveals morphological and molecular correlates of tumor aggressiveness in prostate cancer.

Digital pathology enables objective evaluation of prognostic markers in prostate cancer through integrated morphological and molecular analysis. In this study, 72 radical prostatectomy samples were analyzed using tissue microarrays and whole-slide imaging, with tumor regions annotated by pathologists and quantified in QuPath for PTEN, Ki-67, ATM, CD8, and key histological features. PTEN quantification showed high variability and limited predictive value (AUC = 0.61). Cribriform morphology was significantly associated with advanced pathological stage, non-organ-confined tumors, and a profile of aggressiveness markers, whereas CD8 + density did not correlate, supporting an "immune-cold" phenotype. Quantitative cribriform area did not add prognostic value. A logistic regression model combining Gleason pattern 4 percentage and ATM expression predicted cribriform morphology with good accuracy (AUC = 0.79). These results highlight the potential of digital pathology to refine risk stratification and identify high-risk morpho-molecular features in prostate cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Urology and Nephrology
International Urology and Nephrology 医学-泌尿学与肾脏学
CiteScore
3.40
自引率
5.00%
发文量
329
审稿时长
1.7 months
期刊介绍: International Urology and Nephrology publishes original papers on a broad range of topics in urology, nephrology and andrology. The journal integrates papers originating from clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信