Lien Tang , Ben Marwedel , Caleb Dang , Marian Olewine , Melanie Jun , Paulina Naydenkov , Lorél Y. Medina , Veronica Gayoso , Ngoc Doan , Shamus L. O’Leary , Carmine Schiavone , Joseph Cave , Aarush Tutiki , Tamara Howard , John D. Watt , Prashant Dogra , Rita E. Serda , Achraf Noureddine
{"title":"合理设计免疫原性纳米颗粒作为减轻小鼠卵巢肿瘤负荷的平台。","authors":"Lien Tang , Ben Marwedel , Caleb Dang , Marian Olewine , Melanie Jun , Paulina Naydenkov , Lorél Y. Medina , Veronica Gayoso , Ngoc Doan , Shamus L. O’Leary , Carmine Schiavone , Joseph Cave , Aarush Tutiki , Tamara Howard , John D. Watt , Prashant Dogra , Rita E. Serda , Achraf Noureddine","doi":"10.1016/j.ijpharm.2025.126251","DOIUrl":null,"url":null,"abstract":"<div><div>Ovarian cancer immunotherapy remains a challenge based on the “cold” tumor microenvironment. Herein we present a rational design to create immunogenic nanoparticles as a multi-agent platform that promotes immune response in a mouse model of ovarian cancer. The hybrid lipid-silica nanosystem is capable of co-loading four types of cargo molecules including a model antigen, nucleic acid-based adjuvant cytosine-p-linked to guanine (CpG, TLR3/9 agonist), glycolipid-based adjuvant monophosphoryl lipid A (MPL, TLR4 agonist) integrated into the lipid coat. The optimization of the nanoplatform in terms of lipid composition, functionalized silica dendritic core formation, and final charge, as well as their compatibility with the complex loading profile highlights an opportunity for enhanced survival of mice with advanced ovarian cancer compared to monotherapy. The inclusion of CpG in the nanoparticle formulation enhanced the survival of mice with ovarian cancer. To interpret these outcomes and guide future design, we also developed a mathematical model of nanoparticle-driven immune activation, which quantified treatment efficacy and identified key parameters governing tumor response. The presented hybrid nanoparticle is tunable, enabling delivery of alternative molecules therefore, thereby highlighting a promising platform for the treatment of peritoneal cancers.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"685 ","pages":"Article 126251"},"PeriodicalIF":5.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of immunogenic nanoparticles as a platform to reduce ovarian tumor burden in mice\",\"authors\":\"Lien Tang , Ben Marwedel , Caleb Dang , Marian Olewine , Melanie Jun , Paulina Naydenkov , Lorél Y. Medina , Veronica Gayoso , Ngoc Doan , Shamus L. O’Leary , Carmine Schiavone , Joseph Cave , Aarush Tutiki , Tamara Howard , John D. Watt , Prashant Dogra , Rita E. Serda , Achraf Noureddine\",\"doi\":\"10.1016/j.ijpharm.2025.126251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ovarian cancer immunotherapy remains a challenge based on the “cold” tumor microenvironment. Herein we present a rational design to create immunogenic nanoparticles as a multi-agent platform that promotes immune response in a mouse model of ovarian cancer. The hybrid lipid-silica nanosystem is capable of co-loading four types of cargo molecules including a model antigen, nucleic acid-based adjuvant cytosine-p-linked to guanine (CpG, TLR3/9 agonist), glycolipid-based adjuvant monophosphoryl lipid A (MPL, TLR4 agonist) integrated into the lipid coat. The optimization of the nanoplatform in terms of lipid composition, functionalized silica dendritic core formation, and final charge, as well as their compatibility with the complex loading profile highlights an opportunity for enhanced survival of mice with advanced ovarian cancer compared to monotherapy. The inclusion of CpG in the nanoparticle formulation enhanced the survival of mice with ovarian cancer. To interpret these outcomes and guide future design, we also developed a mathematical model of nanoparticle-driven immune activation, which quantified treatment efficacy and identified key parameters governing tumor response. The presented hybrid nanoparticle is tunable, enabling delivery of alternative molecules therefore, thereby highlighting a promising platform for the treatment of peritoneal cancers.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"685 \",\"pages\":\"Article 126251\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517325010889\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325010889","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Rational design of immunogenic nanoparticles as a platform to reduce ovarian tumor burden in mice
Ovarian cancer immunotherapy remains a challenge based on the “cold” tumor microenvironment. Herein we present a rational design to create immunogenic nanoparticles as a multi-agent platform that promotes immune response in a mouse model of ovarian cancer. The hybrid lipid-silica nanosystem is capable of co-loading four types of cargo molecules including a model antigen, nucleic acid-based adjuvant cytosine-p-linked to guanine (CpG, TLR3/9 agonist), glycolipid-based adjuvant monophosphoryl lipid A (MPL, TLR4 agonist) integrated into the lipid coat. The optimization of the nanoplatform in terms of lipid composition, functionalized silica dendritic core formation, and final charge, as well as their compatibility with the complex loading profile highlights an opportunity for enhanced survival of mice with advanced ovarian cancer compared to monotherapy. The inclusion of CpG in the nanoparticle formulation enhanced the survival of mice with ovarian cancer. To interpret these outcomes and guide future design, we also developed a mathematical model of nanoparticle-driven immune activation, which quantified treatment efficacy and identified key parameters governing tumor response. The presented hybrid nanoparticle is tunable, enabling delivery of alternative molecules therefore, thereby highlighting a promising platform for the treatment of peritoneal cancers.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.