Yueru Ji, Xiaotong Gao, Li Liu, Zhuo Wan, Weiwei Qin
{"title":"血浆代谢物在炎症蛋白-淋巴瘤因果关系中的介导作用:一项孟德尔随机研究。","authors":"Yueru Ji, Xiaotong Gao, Li Liu, Zhuo Wan, Weiwei Qin","doi":"10.2174/0109298673382735250904071151","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diffuse large B-cell lymphoma (DLBCL) pathogenesis is poorly understood, with limited causal evidence linking circulating inflammatory proteins (CIPs) and metabolites to disease risk. Observational studies face challenges from confounding and reverse causation, while existing Mendelian randomization (MR) analyses lack bidirectional designs and multi-omics integration.</p><p><strong>Methods: </strong>A bidirectional two-sample MR design was applied using inverse-variance weighting (IVW). Genetic instruments for 91 CIPs derived from Olink proteomic data (14,824 participants). DLBCL genetic associations (1,050 cases; 314,193 controls) were obtained from FinnGen (R10 release). Data for 1,091 blood metabolites and 309 metabolite ratios were sourced from the GWAS Catalog.</p><p><strong>Results: </strong>Ten CIPs exhibited causal effects on DLBCL. Risk-increasing proteins included: IL-10 (OR=1.46, 95%CI=1.05-2.03), TSLP (1.37,1.01-1.84), IL-17C (1.34,1.05-1.72), NRTN (1.30,1.02-1.66), OPG (1.29,1.01-1.66), and MCP1 (1.26,1.04-1.52). Protective proteins included: CD40 (0.82,0.67-1.00), CXCL9 (0.78,0.61-0.98), CD5 (0.77,0.61-0.97), and MCP3 (0.76,0.58-0.99). Reverse causation was absent for 7 proteins. Mediation analysis revealed 17.2% (p=0.048) of CD5's protective effect was mediated by 1-methylhistidine.</p><p><strong>Discussion: </strong>These findings establish CIPs as causal factors in DLBCL pathogenesis and identify metabolite-mediated pathways as novel mechanistic links. The bidirectional design and multi-omics integration overcome key limitations of prior research, though statistical power for some mediation tests was limited by metabolite GWAS sample sizes.</p><p><strong>Conclusion: </strong>Plasma inflammatory proteins causally influence DLBCL risk, partially mediated by metabolites. This underscores metabolite pathways as potential targets for therapeutic intervention.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mediating Effects of Plasma Metabolites in Inflammatory Protein-Lymphoma Causality: A Mendelian Randomization Study.\",\"authors\":\"Yueru Ji, Xiaotong Gao, Li Liu, Zhuo Wan, Weiwei Qin\",\"doi\":\"10.2174/0109298673382735250904071151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Diffuse large B-cell lymphoma (DLBCL) pathogenesis is poorly understood, with limited causal evidence linking circulating inflammatory proteins (CIPs) and metabolites to disease risk. Observational studies face challenges from confounding and reverse causation, while existing Mendelian randomization (MR) analyses lack bidirectional designs and multi-omics integration.</p><p><strong>Methods: </strong>A bidirectional two-sample MR design was applied using inverse-variance weighting (IVW). Genetic instruments for 91 CIPs derived from Olink proteomic data (14,824 participants). DLBCL genetic associations (1,050 cases; 314,193 controls) were obtained from FinnGen (R10 release). Data for 1,091 blood metabolites and 309 metabolite ratios were sourced from the GWAS Catalog.</p><p><strong>Results: </strong>Ten CIPs exhibited causal effects on DLBCL. Risk-increasing proteins included: IL-10 (OR=1.46, 95%CI=1.05-2.03), TSLP (1.37,1.01-1.84), IL-17C (1.34,1.05-1.72), NRTN (1.30,1.02-1.66), OPG (1.29,1.01-1.66), and MCP1 (1.26,1.04-1.52). Protective proteins included: CD40 (0.82,0.67-1.00), CXCL9 (0.78,0.61-0.98), CD5 (0.77,0.61-0.97), and MCP3 (0.76,0.58-0.99). Reverse causation was absent for 7 proteins. Mediation analysis revealed 17.2% (p=0.048) of CD5's protective effect was mediated by 1-methylhistidine.</p><p><strong>Discussion: </strong>These findings establish CIPs as causal factors in DLBCL pathogenesis and identify metabolite-mediated pathways as novel mechanistic links. The bidirectional design and multi-omics integration overcome key limitations of prior research, though statistical power for some mediation tests was limited by metabolite GWAS sample sizes.</p><p><strong>Conclusion: </strong>Plasma inflammatory proteins causally influence DLBCL risk, partially mediated by metabolites. This underscores metabolite pathways as potential targets for therapeutic intervention.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673382735250904071151\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673382735250904071151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mediating Effects of Plasma Metabolites in Inflammatory Protein-Lymphoma Causality: A Mendelian Randomization Study.
Introduction: Diffuse large B-cell lymphoma (DLBCL) pathogenesis is poorly understood, with limited causal evidence linking circulating inflammatory proteins (CIPs) and metabolites to disease risk. Observational studies face challenges from confounding and reverse causation, while existing Mendelian randomization (MR) analyses lack bidirectional designs and multi-omics integration.
Methods: A bidirectional two-sample MR design was applied using inverse-variance weighting (IVW). Genetic instruments for 91 CIPs derived from Olink proteomic data (14,824 participants). DLBCL genetic associations (1,050 cases; 314,193 controls) were obtained from FinnGen (R10 release). Data for 1,091 blood metabolites and 309 metabolite ratios were sourced from the GWAS Catalog.
Results: Ten CIPs exhibited causal effects on DLBCL. Risk-increasing proteins included: IL-10 (OR=1.46, 95%CI=1.05-2.03), TSLP (1.37,1.01-1.84), IL-17C (1.34,1.05-1.72), NRTN (1.30,1.02-1.66), OPG (1.29,1.01-1.66), and MCP1 (1.26,1.04-1.52). Protective proteins included: CD40 (0.82,0.67-1.00), CXCL9 (0.78,0.61-0.98), CD5 (0.77,0.61-0.97), and MCP3 (0.76,0.58-0.99). Reverse causation was absent for 7 proteins. Mediation analysis revealed 17.2% (p=0.048) of CD5's protective effect was mediated by 1-methylhistidine.
Discussion: These findings establish CIPs as causal factors in DLBCL pathogenesis and identify metabolite-mediated pathways as novel mechanistic links. The bidirectional design and multi-omics integration overcome key limitations of prior research, though statistical power for some mediation tests was limited by metabolite GWAS sample sizes.
Conclusion: Plasma inflammatory proteins causally influence DLBCL risk, partially mediated by metabolites. This underscores metabolite pathways as potential targets for therapeutic intervention.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.