Luo Ting Helen Huang, Raymond Jun-Rui Gao, Dahai Zhang, Cuilan Nian, Willem Martzke, A M James Shapiro, Tatsuya Kin, Yaser Tahamtani, Francis C Lynn
{"title":"截断的CD19作为干细胞衍生β细胞分离的选择标记。","authors":"Luo Ting Helen Huang, Raymond Jun-Rui Gao, Dahai Zhang, Cuilan Nian, Willem Martzke, A M James Shapiro, Tatsuya Kin, Yaser Tahamtani, Francis C Lynn","doi":"10.1242/dmm.052376","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-derived β-cells (SCβ-cell) are a renewable and scalable alternative to cadaveric islets as a cell replacement therapy for type 1 diabetes (T1D). However, heterogeneity within SCβ-cell cultures remains problematic for graft safety and function. Magnetic selection of SCβ-cells expressing a unique cell surface marker may help deplete undesirable cell types and facilitate functional maturation. Here, we explored CD19 as a potential cell surface marker for the enrichment of insulin-expressing SCβ-cells. Using CRISPR/Cas9 technology, we created a knock-in add-on of CD19-mScarlet downstream of the insulin coding sequence in human embryonic stem cells (hESCs). We developed and optimized a magnetic sorting protocol for CD19-mScarlet-expressing cells, forming enriched SCβ-cell clusters with improved glucose-stimulated c-peptide secretion. This strategy holds promise to facilitate large-scale production of functional SCβ-cells for disease modeling and cell replacement therapy.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truncated CD19 as a selection marker for the isolation of stem cell derived β-cells.\",\"authors\":\"Luo Ting Helen Huang, Raymond Jun-Rui Gao, Dahai Zhang, Cuilan Nian, Willem Martzke, A M James Shapiro, Tatsuya Kin, Yaser Tahamtani, Francis C Lynn\",\"doi\":\"10.1242/dmm.052376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cell-derived β-cells (SCβ-cell) are a renewable and scalable alternative to cadaveric islets as a cell replacement therapy for type 1 diabetes (T1D). However, heterogeneity within SCβ-cell cultures remains problematic for graft safety and function. Magnetic selection of SCβ-cells expressing a unique cell surface marker may help deplete undesirable cell types and facilitate functional maturation. Here, we explored CD19 as a potential cell surface marker for the enrichment of insulin-expressing SCβ-cells. Using CRISPR/Cas9 technology, we created a knock-in add-on of CD19-mScarlet downstream of the insulin coding sequence in human embryonic stem cells (hESCs). We developed and optimized a magnetic sorting protocol for CD19-mScarlet-expressing cells, forming enriched SCβ-cell clusters with improved glucose-stimulated c-peptide secretion. This strategy holds promise to facilitate large-scale production of functional SCβ-cells for disease modeling and cell replacement therapy.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.052376\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052376","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Truncated CD19 as a selection marker for the isolation of stem cell derived β-cells.
Stem cell-derived β-cells (SCβ-cell) are a renewable and scalable alternative to cadaveric islets as a cell replacement therapy for type 1 diabetes (T1D). However, heterogeneity within SCβ-cell cultures remains problematic for graft safety and function. Magnetic selection of SCβ-cells expressing a unique cell surface marker may help deplete undesirable cell types and facilitate functional maturation. Here, we explored CD19 as a potential cell surface marker for the enrichment of insulin-expressing SCβ-cells. Using CRISPR/Cas9 technology, we created a knock-in add-on of CD19-mScarlet downstream of the insulin coding sequence in human embryonic stem cells (hESCs). We developed and optimized a magnetic sorting protocol for CD19-mScarlet-expressing cells, forming enriched SCβ-cell clusters with improved glucose-stimulated c-peptide secretion. This strategy holds promise to facilitate large-scale production of functional SCβ-cells for disease modeling and cell replacement therapy.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.