Ling Ren, Yang Yuan, Khaled Farea, Xu Feng, Jia He, Yi Liu, Bowen Zheng
{"title":"铜绿假单胞菌生物膜在缺氧环境下的适应性。","authors":"Ling Ren, Yang Yuan, Khaled Farea, Xu Feng, Jia He, Yi Liu, Bowen Zheng","doi":"10.3389/fcimb.2025.1655335","DOIUrl":null,"url":null,"abstract":"<p><p>Under oxygen-limited conditions, the adaptability and underlying mechanisms of bacterial biofilms have become key areas of interest in microbiology and clinical infection research. Within biofilms-composed of bacterial communities and extracellular matrix-an oxygen gradient commonly forms, resulting in hypoxic or even anoxic microenvironments. Such conditions substantially increase biofilm antibiotic resistance and facilitate the persistence of chronic infections. This review systematically summarizes the adaptive strategies employed by biofilms in hypoxic environments, including anaerobic metabolism, phenazine-mediated electron shuttling, and virulence factor regulation. These adaptive responses are governed by genes involved in anaerobic metabolism, quorum sensing systems, and the secondary messenger 3,5-cyclic diguanylic acid (c-di-GMP), which collectively influence biofilm formation. Key transcriptional regulators such as Anr and Dnr, the two-component system NarXL, along with specific functional genes, form an intricate regulatory network. This article aims to provide a comprehensive overview of the adaptive mechanisms of Pseudomonas aeruginosa biofilms under oxygen-limited conditions, providing a theoretical foundation for the development of novel anti-infective therapies, targeting the biofilm infection microenvironment in cystic fibrosis and chronic wounds.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1655335"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12491237/pdf/","citationCount":"0","resultStr":"{\"title\":\"The adaptability of <i>Pseudomonas aeruginosa</i> biofilm in oxygen-limited environments.\",\"authors\":\"Ling Ren, Yang Yuan, Khaled Farea, Xu Feng, Jia He, Yi Liu, Bowen Zheng\",\"doi\":\"10.3389/fcimb.2025.1655335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under oxygen-limited conditions, the adaptability and underlying mechanisms of bacterial biofilms have become key areas of interest in microbiology and clinical infection research. Within biofilms-composed of bacterial communities and extracellular matrix-an oxygen gradient commonly forms, resulting in hypoxic or even anoxic microenvironments. Such conditions substantially increase biofilm antibiotic resistance and facilitate the persistence of chronic infections. This review systematically summarizes the adaptive strategies employed by biofilms in hypoxic environments, including anaerobic metabolism, phenazine-mediated electron shuttling, and virulence factor regulation. These adaptive responses are governed by genes involved in anaerobic metabolism, quorum sensing systems, and the secondary messenger 3,5-cyclic diguanylic acid (c-di-GMP), which collectively influence biofilm formation. Key transcriptional regulators such as Anr and Dnr, the two-component system NarXL, along with specific functional genes, form an intricate regulatory network. This article aims to provide a comprehensive overview of the adaptive mechanisms of Pseudomonas aeruginosa biofilms under oxygen-limited conditions, providing a theoretical foundation for the development of novel anti-infective therapies, targeting the biofilm infection microenvironment in cystic fibrosis and chronic wounds.</p>\",\"PeriodicalId\":12458,\"journal\":{\"name\":\"Frontiers in Cellular and Infection Microbiology\",\"volume\":\"15 \",\"pages\":\"1655335\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12491237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cellular and Infection Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fcimb.2025.1655335\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1655335","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The adaptability of Pseudomonas aeruginosa biofilm in oxygen-limited environments.
Under oxygen-limited conditions, the adaptability and underlying mechanisms of bacterial biofilms have become key areas of interest in microbiology and clinical infection research. Within biofilms-composed of bacterial communities and extracellular matrix-an oxygen gradient commonly forms, resulting in hypoxic or even anoxic microenvironments. Such conditions substantially increase biofilm antibiotic resistance and facilitate the persistence of chronic infections. This review systematically summarizes the adaptive strategies employed by biofilms in hypoxic environments, including anaerobic metabolism, phenazine-mediated electron shuttling, and virulence factor regulation. These adaptive responses are governed by genes involved in anaerobic metabolism, quorum sensing systems, and the secondary messenger 3,5-cyclic diguanylic acid (c-di-GMP), which collectively influence biofilm formation. Key transcriptional regulators such as Anr and Dnr, the two-component system NarXL, along with specific functional genes, form an intricate regulatory network. This article aims to provide a comprehensive overview of the adaptive mechanisms of Pseudomonas aeruginosa biofilms under oxygen-limited conditions, providing a theoretical foundation for the development of novel anti-infective therapies, targeting the biofilm infection microenvironment in cystic fibrosis and chronic wounds.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.