秀丽隐杆线虫核糖体生物发生缺陷通过TOR信号和间隙连接触发亚基特异性发育检查点。

IF 2.1 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY
Agustian Surya , Qiuxia Zhao , Brittney Voigt , Rekha Rangan , Elif Sarinay Cenik
{"title":"秀丽隐杆线虫核糖体生物发生缺陷通过TOR信号和间隙连接触发亚基特异性发育检查点。","authors":"Agustian Surya ,&nbsp;Qiuxia Zhao ,&nbsp;Brittney Voigt ,&nbsp;Rekha Rangan ,&nbsp;Elif Sarinay Cenik","doi":"10.1016/j.ydbio.2025.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Ribosome biogenesis is critical for postembryonic development progression in <em>Caenorhabditis elegans</em>. Although maternally supplied ribosomes allow null mutants of ribosomal protein genes to complete embryogenesis, subsequent larval stages arrest if de novo ribosome production is compromised. Here, we compared null mutants in large <em>(rpl-5, rpl-33</em>) and small (<em>rps-10, rps-23</em>) ribosomal subunit genes with mutants defective in rRNA synthesis (<em>rpoa-2</em> and <em>rDNA loci</em>). By tracking divisions of the mesoblast (M) cell, we discovered that large subunit mutations cause a stringent arrest in M cell proliferation, distinctly more severe than the partial arrests observed in small subunit and rRNA synthesis mutants. Unlike nutrient-deprived (starvation) L1 diapause, this arrest does not activate the cyclin-dependent kinase inhibitor CKI-1, suggesting a CKI-1-independent checkpoint. Gene expression analyses revealed that <em>rpl-5(0)</em> and <em>rDNA(0)</em> mutants share overexpression of genes involved in ribosomal RNA processing and ribosome assembly, whereas larvae depleted of the RNA polymerase I subunit RPOA-2 uniquely overexpress lipid metabolism genes. Tissue-specific manipulations previously confirmed that ribosomal insufficiency in a single tissue can impose a whole-organism developmental block. Genetic analyses further implicated the gap junction protein INX-14 and the TORC2 component SINH-1 as partial suppressors of the M cell arrest in small ribosomal subunit mutants (<em>rps-23(0)</em>), but not in large ribosomal subunit mutants (<em>rpl-5(0)</em>). Introducing null mutations in downstream TORC1/TORC2 kinases to a tissue-specific RPOA-2 depletion background similarly modulated growth arrest, suggesting that gap junction communication and TOR pathways converge upon a ribosomal stress checkpoint. Collectively, our findings highlight a unique, CKI-1-independent arrest driven by large ribosomal subunit gene loss and reveal how distinct signaling pathways coordinate postembryonic development in response to ribosome biogenesis defects.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"529 ","pages":"Pages 46-55"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ribosomal biogenesis defects trigger subunit specific developmental checkpoints via TOR signaling and gap junction in C. elegans\",\"authors\":\"Agustian Surya ,&nbsp;Qiuxia Zhao ,&nbsp;Brittney Voigt ,&nbsp;Rekha Rangan ,&nbsp;Elif Sarinay Cenik\",\"doi\":\"10.1016/j.ydbio.2025.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ribosome biogenesis is critical for postembryonic development progression in <em>Caenorhabditis elegans</em>. Although maternally supplied ribosomes allow null mutants of ribosomal protein genes to complete embryogenesis, subsequent larval stages arrest if de novo ribosome production is compromised. Here, we compared null mutants in large <em>(rpl-5, rpl-33</em>) and small (<em>rps-10, rps-23</em>) ribosomal subunit genes with mutants defective in rRNA synthesis (<em>rpoa-2</em> and <em>rDNA loci</em>). By tracking divisions of the mesoblast (M) cell, we discovered that large subunit mutations cause a stringent arrest in M cell proliferation, distinctly more severe than the partial arrests observed in small subunit and rRNA synthesis mutants. Unlike nutrient-deprived (starvation) L1 diapause, this arrest does not activate the cyclin-dependent kinase inhibitor CKI-1, suggesting a CKI-1-independent checkpoint. Gene expression analyses revealed that <em>rpl-5(0)</em> and <em>rDNA(0)</em> mutants share overexpression of genes involved in ribosomal RNA processing and ribosome assembly, whereas larvae depleted of the RNA polymerase I subunit RPOA-2 uniquely overexpress lipid metabolism genes. Tissue-specific manipulations previously confirmed that ribosomal insufficiency in a single tissue can impose a whole-organism developmental block. Genetic analyses further implicated the gap junction protein INX-14 and the TORC2 component SINH-1 as partial suppressors of the M cell arrest in small ribosomal subunit mutants (<em>rps-23(0)</em>), but not in large ribosomal subunit mutants (<em>rpl-5(0)</em>). Introducing null mutations in downstream TORC1/TORC2 kinases to a tissue-specific RPOA-2 depletion background similarly modulated growth arrest, suggesting that gap junction communication and TOR pathways converge upon a ribosomal stress checkpoint. Collectively, our findings highlight a unique, CKI-1-independent arrest driven by large ribosomal subunit gene loss and reveal how distinct signaling pathways coordinate postembryonic development in response to ribosome biogenesis defects.</div></div>\",\"PeriodicalId\":11070,\"journal\":{\"name\":\"Developmental biology\",\"volume\":\"529 \",\"pages\":\"Pages 46-55\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012160625002830\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160625002830","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核糖体生物发生是秀丽隐杆线虫胚胎后发育进程的关键。虽然母源提供的核糖体允许核糖体蛋白基因的零突变体完成胚胎发生,但如果新生核糖体的产生受到损害,随后的幼虫阶段就会停滞。在这里,我们比较了大(rpl-5, rpl-33)和小(rps-10, rps-23)核糖体亚基基因的零突变体和rRNA合成缺陷的突变体(rpoa-2和rDNA位点)。通过跟踪中母细胞(M)的分裂,我们发现大亚基突变导致M细胞增殖的严格抑制,明显比在小亚基和rRNA合成突变中观察到的部分抑制更严重。与营养剥夺(饥饿)L1滞育不同,这种阻滞不会激活周期蛋白依赖性激酶抑制剂CKI-1,这表明CKI-1不依赖于检查点。基因表达分析显示,rpl5(0)和rDNA(0)突变体都有参与核糖体RNA加工和核糖体组装的基因过表达,而缺乏RNA聚合酶I亚基RPOA-2的幼虫则独特地过表达脂质代谢基因。组织特异性操作先前证实,单个组织中的核糖体功能不全可造成整个生物体发育障碍。遗传分析进一步表明,间隙连接蛋白INX-14和TORC2组分SINH-1是小核糖体亚基突变体(rps-23(0))中M细胞阻滞的部分抑制因子,但在大核糖体亚基突变体(rpi -5(0))中则不是。将下游TORC1/TORC2激酶的零突变引入到组织特异性RPOA-2缺失背景中,类似地调节了生长停滞,这表明间隙连接通信和TOR通路在核糖体应激检查点汇聚。总的来说,我们的研究结果强调了一种独特的,cki -1独立的由大核糖体亚基基因丢失驱动的阻滞,并揭示了不同的信号通路如何协调胚胎后发育以响应核糖体生物发生缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ribosomal biogenesis defects trigger subunit specific developmental checkpoints via TOR signaling and gap junction in C. elegans
Ribosome biogenesis is critical for postembryonic development progression in Caenorhabditis elegans. Although maternally supplied ribosomes allow null mutants of ribosomal protein genes to complete embryogenesis, subsequent larval stages arrest if de novo ribosome production is compromised. Here, we compared null mutants in large (rpl-5, rpl-33) and small (rps-10, rps-23) ribosomal subunit genes with mutants defective in rRNA synthesis (rpoa-2 and rDNA loci). By tracking divisions of the mesoblast (M) cell, we discovered that large subunit mutations cause a stringent arrest in M cell proliferation, distinctly more severe than the partial arrests observed in small subunit and rRNA synthesis mutants. Unlike nutrient-deprived (starvation) L1 diapause, this arrest does not activate the cyclin-dependent kinase inhibitor CKI-1, suggesting a CKI-1-independent checkpoint. Gene expression analyses revealed that rpl-5(0) and rDNA(0) mutants share overexpression of genes involved in ribosomal RNA processing and ribosome assembly, whereas larvae depleted of the RNA polymerase I subunit RPOA-2 uniquely overexpress lipid metabolism genes. Tissue-specific manipulations previously confirmed that ribosomal insufficiency in a single tissue can impose a whole-organism developmental block. Genetic analyses further implicated the gap junction protein INX-14 and the TORC2 component SINH-1 as partial suppressors of the M cell arrest in small ribosomal subunit mutants (rps-23(0)), but not in large ribosomal subunit mutants (rpl-5(0)). Introducing null mutations in downstream TORC1/TORC2 kinases to a tissue-specific RPOA-2 depletion background similarly modulated growth arrest, suggesting that gap junction communication and TOR pathways converge upon a ribosomal stress checkpoint. Collectively, our findings highlight a unique, CKI-1-independent arrest driven by large ribosomal subunit gene loss and reveal how distinct signaling pathways coordinate postembryonic development in response to ribosome biogenesis defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental biology
Developmental biology 生物-发育生物学
CiteScore
5.30
自引率
3.70%
发文量
182
审稿时长
1.5 months
期刊介绍: Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信