Katerina K Yamamoto, Margaret Wan, Rijul S Penkar, Cathy Savage-Dunn
{"title":"脂肪酸代谢的bmp依赖性动员促进秀丽隐杆线虫在细菌病原体上的生存。","authors":"Katerina K Yamamoto, Margaret Wan, Rijul S Penkar, Cathy Savage-Dunn","doi":"10.1242/dmm.052357","DOIUrl":null,"url":null,"abstract":"<p><p>The Bone Morphogenetic Proteins (BMPs) are secreted peptide ligands of the Transforming Growth Factor beta (TGF-β) family, initially identified for their roles in development and differentiation across animal species. They are now increasingly recognized for their roles in physiology and infectious disease. In the nematode Caenorhabditis elegans, the BMP ligand DBL-1 controls fat metabolism and immune response, in addition to its roles in body size regulation and development. DBL-1 regulates classical aspects of innate immunity, including the induction of anti-microbial peptides. We theorized that BMP-dependent regulation of fat metabolism could also promote resilience against microbial pathogens. We found that exposure to a bacterial pathogen alters total fat stores, lipid droplet dynamics, and lipid metabolism gene expression in a BMP-dependent manner. We further showed that fatty acid desaturation plays a major role in survival on a bacterial pathogen, while fatty acid β-oxidation plays a more minor role. We conclude that C. elegans mobilizes fatty acid metabolism in response to pathogen exposure to promote survival. Our investigation provides a framework to study potential metabolic interventions that could support therapeutics that are complementary to antibiotic strategies.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMP-dependent mobilization of fatty acid metabolism promotes Caenorhabditis elegans survival on a bacterial pathogen.\",\"authors\":\"Katerina K Yamamoto, Margaret Wan, Rijul S Penkar, Cathy Savage-Dunn\",\"doi\":\"10.1242/dmm.052357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Bone Morphogenetic Proteins (BMPs) are secreted peptide ligands of the Transforming Growth Factor beta (TGF-β) family, initially identified for their roles in development and differentiation across animal species. They are now increasingly recognized for their roles in physiology and infectious disease. In the nematode Caenorhabditis elegans, the BMP ligand DBL-1 controls fat metabolism and immune response, in addition to its roles in body size regulation and development. DBL-1 regulates classical aspects of innate immunity, including the induction of anti-microbial peptides. We theorized that BMP-dependent regulation of fat metabolism could also promote resilience against microbial pathogens. We found that exposure to a bacterial pathogen alters total fat stores, lipid droplet dynamics, and lipid metabolism gene expression in a BMP-dependent manner. We further showed that fatty acid desaturation plays a major role in survival on a bacterial pathogen, while fatty acid β-oxidation plays a more minor role. We conclude that C. elegans mobilizes fatty acid metabolism in response to pathogen exposure to promote survival. Our investigation provides a framework to study potential metabolic interventions that could support therapeutics that are complementary to antibiotic strategies.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.052357\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052357","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
BMP-dependent mobilization of fatty acid metabolism promotes Caenorhabditis elegans survival on a bacterial pathogen.
The Bone Morphogenetic Proteins (BMPs) are secreted peptide ligands of the Transforming Growth Factor beta (TGF-β) family, initially identified for their roles in development and differentiation across animal species. They are now increasingly recognized for their roles in physiology and infectious disease. In the nematode Caenorhabditis elegans, the BMP ligand DBL-1 controls fat metabolism and immune response, in addition to its roles in body size regulation and development. DBL-1 regulates classical aspects of innate immunity, including the induction of anti-microbial peptides. We theorized that BMP-dependent regulation of fat metabolism could also promote resilience against microbial pathogens. We found that exposure to a bacterial pathogen alters total fat stores, lipid droplet dynamics, and lipid metabolism gene expression in a BMP-dependent manner. We further showed that fatty acid desaturation plays a major role in survival on a bacterial pathogen, while fatty acid β-oxidation plays a more minor role. We conclude that C. elegans mobilizes fatty acid metabolism in response to pathogen exposure to promote survival. Our investigation provides a framework to study potential metabolic interventions that could support therapeutics that are complementary to antibiotic strategies.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.