二维富铁层状硅酸盐的磁序成像。

IF 9.6 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Communications Materials Pub Date : 2025-01-01 Epub Date: 2025-10-02 DOI:10.1038/s43246-025-00936-7
Muhammad Zubair Khan, Andriani Vervelaki, Daniel Jetter, Kousik Bagani, Andreas Ney, Oleg E Peil, Sergio Valencia, Alevtina Smekhova, Florian Kronast, Daniel Knez, Martina Dienstleder, Martino Poggio, Aleksandar Matković
{"title":"二维富铁层状硅酸盐的磁序成像。","authors":"Muhammad Zubair Khan, Andriani Vervelaki, Daniel Jetter, Kousik Bagani, Andreas Ney, Oleg E Peil, Sergio Valencia, Alevtina Smekhova, Florian Kronast, Daniel Knez, Martina Dienstleder, Martino Poggio, Aleksandar Matković","doi":"10.1038/s43246-025-00936-7","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic domain formation in two-dimensional materials offers insight into the fundamentals of magnetism and serves as a catalyst for the advancement of spintronics. In order to propel these developments, it is crucial to acquire an understanding of the evolution of magnetic ordering at the nanometer scale. In particular, two-dimensional magnetic insulators allow for the realization of atomically sharp magnetoresistive tunneling junctions with nonmagnetic electrodes, therefore lifting one of the major constraints for the realization of computing in memory based on magnetoresistive elements. In this study, we visualize magnetic ordering in monolayers of annite, a fully air-stable layered magnetic mica. Using a nanometer-scale scanning superconducting quantum interference device microscopy, we directly observe domain formation in this representative of two-dimensional magnetic phyllosilicates.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"217"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12491068/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imaging magnetic order in a two-dimensional iron-rich phyllosilicate.\",\"authors\":\"Muhammad Zubair Khan, Andriani Vervelaki, Daniel Jetter, Kousik Bagani, Andreas Ney, Oleg E Peil, Sergio Valencia, Alevtina Smekhova, Florian Kronast, Daniel Knez, Martina Dienstleder, Martino Poggio, Aleksandar Matković\",\"doi\":\"10.1038/s43246-025-00936-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic domain formation in two-dimensional materials offers insight into the fundamentals of magnetism and serves as a catalyst for the advancement of spintronics. In order to propel these developments, it is crucial to acquire an understanding of the evolution of magnetic ordering at the nanometer scale. In particular, two-dimensional magnetic insulators allow for the realization of atomically sharp magnetoresistive tunneling junctions with nonmagnetic electrodes, therefore lifting one of the major constraints for the realization of computing in memory based on magnetoresistive elements. In this study, we visualize magnetic ordering in monolayers of annite, a fully air-stable layered magnetic mica. Using a nanometer-scale scanning superconducting quantum interference device microscopy, we directly observe domain formation in this representative of two-dimensional magnetic phyllosilicates.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"217\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12491068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00936-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00936-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维材料中的磁畴形成提供了对磁性基本原理的洞察,并作为自旋电子学进步的催化剂。为了推动这些发展,了解纳米尺度下磁有序的演变是至关重要的。特别是,二维磁性绝缘体允许与非磁性电极实现原子尖锐磁阻隧道结,因此解除了实现基于磁阻元件的内存计算的主要限制之一。在这项研究中,我们可视化了磁性云母单层的磁性有序,这是一种完全空气稳定的层状磁性云母。利用纳米级扫描超导量子干涉装置显微镜,我们直接观察到这种具有代表性的二维磁性层状硅酸盐的畴形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imaging magnetic order in a two-dimensional iron-rich phyllosilicate.

Magnetic domain formation in two-dimensional materials offers insight into the fundamentals of magnetism and serves as a catalyst for the advancement of spintronics. In order to propel these developments, it is crucial to acquire an understanding of the evolution of magnetic ordering at the nanometer scale. In particular, two-dimensional magnetic insulators allow for the realization of atomically sharp magnetoresistive tunneling junctions with nonmagnetic electrodes, therefore lifting one of the major constraints for the realization of computing in memory based on magnetoresistive elements. In this study, we visualize magnetic ordering in monolayers of annite, a fully air-stable layered magnetic mica. Using a nanometer-scale scanning superconducting quantum interference device microscopy, we directly observe domain formation in this representative of two-dimensional magnetic phyllosilicates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信