DeepMice:一种基于多级映射模块的蛋白质-配体分子对接模型。

IF 3.8 2区 化学 Q2 CHEMISTRY, APPLIED
Jiawei Liu, Qi Wang, Yanzhao Jin, Shuke Zhang, Ruiqiang Guo, Bo Shan, Zhaoxing Wang, Xueli Liu, Xifu Liu, Yu Cheng
{"title":"DeepMice:一种基于多级映射模块的蛋白质-配体分子对接模型。","authors":"Jiawei Liu, Qi Wang, Yanzhao Jin, Shuke Zhang, Ruiqiang Guo, Bo Shan, Zhaoxing Wang, Xueli Liu, Xifu Liu, Yu Cheng","doi":"10.1007/s11030-025-11372-7","DOIUrl":null,"url":null,"abstract":"<p><p>Our study presents DeepMice, a novel artificial intelligence-based molecular docking framework designed to predict protein-ligand binding conformations with improved accuracy. DeepMice's scoring function utilizes a graph transformer network (GTN) as its backbone. It transforms residue-level representations into atomic-level representations, enhancing representation precision. A multilevel mapping module is incorporated to reduce the graph model's size and computational complexity. Subsequently, the mixture density network (MDN) is employed to further realize scoring prediction. In terms of conformational search, DeepMice employs a hybrid strategy combining global heuristic search and local gradient-based optimization. The process initiates with a global exploration using the Differential Evolution (DE) algorithm, followed by local refinement via the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This combined approach enhances conformational search efficiency. Performance tests on the DEKOIS2.0 and DUD-E datasets showed that DeepMice outperformed existing virtual screening technologies such as Glide SP and RTMScore in terms of area under the receiver operating characteristic curve (AUROC), boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and enrichment factor (EF) values. In particular, DeepMice demonstrates advanced molecular docking capabilities in the CASF-2016 standard test set. In addition, DeepMice considers the multiscale structure of proteins, optimizing the conformation scoring process and improving docking efficiency. In summary, DeepMice is an efficient and accurate molecular docking model, which is expected to accelerate the process of new drug research and development. The program based on the DeepMice model, which is now freely available at https://www.deepmice.com , provides a powerful tool for drug discovery.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepMice: a novel protein-ligand molecular docking model based on multilevel mapping modules.\",\"authors\":\"Jiawei Liu, Qi Wang, Yanzhao Jin, Shuke Zhang, Ruiqiang Guo, Bo Shan, Zhaoxing Wang, Xueli Liu, Xifu Liu, Yu Cheng\",\"doi\":\"10.1007/s11030-025-11372-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our study presents DeepMice, a novel artificial intelligence-based molecular docking framework designed to predict protein-ligand binding conformations with improved accuracy. DeepMice's scoring function utilizes a graph transformer network (GTN) as its backbone. It transforms residue-level representations into atomic-level representations, enhancing representation precision. A multilevel mapping module is incorporated to reduce the graph model's size and computational complexity. Subsequently, the mixture density network (MDN) is employed to further realize scoring prediction. In terms of conformational search, DeepMice employs a hybrid strategy combining global heuristic search and local gradient-based optimization. The process initiates with a global exploration using the Differential Evolution (DE) algorithm, followed by local refinement via the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This combined approach enhances conformational search efficiency. Performance tests on the DEKOIS2.0 and DUD-E datasets showed that DeepMice outperformed existing virtual screening technologies such as Glide SP and RTMScore in terms of area under the receiver operating characteristic curve (AUROC), boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and enrichment factor (EF) values. In particular, DeepMice demonstrates advanced molecular docking capabilities in the CASF-2016 standard test set. In addition, DeepMice considers the multiscale structure of proteins, optimizing the conformation scoring process and improving docking efficiency. In summary, DeepMice is an efficient and accurate molecular docking model, which is expected to accelerate the process of new drug research and development. The program based on the DeepMice model, which is now freely available at https://www.deepmice.com , provides a powerful tool for drug discovery.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11372-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11372-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究提出了DeepMice,这是一种新的基于人工智能的分子对接框架,旨在以更高的精度预测蛋白质配体结合构象。DeepMice的评分功能利用图形变压器网络(GTN)作为其主干。它将残差级表示转换为原子级表示,提高了表示精度。为了减小图模型的尺寸和计算复杂度,该模型引入了多层映射模块。随后,利用混合密度网络(MDN)进一步实现评分预测。在构象搜索方面,DeepMice采用了全局启发式搜索和局部梯度优化相结合的混合策略。该过程首先使用差分进化(DE)算法进行全局探索,然后通过Broyden-Fletcher-Goldfarb-Shanno (BFGS)算法进行局部细化。这种组合方法提高了构象搜索的效率。在DEKOIS2.0和DUD-E数据集上的性能测试表明,DeepMice在受者工作特征曲线下面积(AUROC)、受者工作特征玻尔兹曼增强判别(BEDROC)和富集因子(EF)值方面优于现有的虚拟筛选技术,如Glide SP和RTMScore。特别是,DeepMice在CASF-2016标准测试集中展示了先进的分子对接能力。此外,DeepMice考虑了蛋白质的多尺度结构,优化了构象评分过程,提高了对接效率。综上所述,DeepMice是一种高效、精准的分子对接模型,有望加速新药研发进程。这个基于DeepMice模型的程序现在可以在https://www.deepmice.com上免费获得,它为药物发现提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepMice: a novel protein-ligand molecular docking model based on multilevel mapping modules.

Our study presents DeepMice, a novel artificial intelligence-based molecular docking framework designed to predict protein-ligand binding conformations with improved accuracy. DeepMice's scoring function utilizes a graph transformer network (GTN) as its backbone. It transforms residue-level representations into atomic-level representations, enhancing representation precision. A multilevel mapping module is incorporated to reduce the graph model's size and computational complexity. Subsequently, the mixture density network (MDN) is employed to further realize scoring prediction. In terms of conformational search, DeepMice employs a hybrid strategy combining global heuristic search and local gradient-based optimization. The process initiates with a global exploration using the Differential Evolution (DE) algorithm, followed by local refinement via the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This combined approach enhances conformational search efficiency. Performance tests on the DEKOIS2.0 and DUD-E datasets showed that DeepMice outperformed existing virtual screening technologies such as Glide SP and RTMScore in terms of area under the receiver operating characteristic curve (AUROC), boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and enrichment factor (EF) values. In particular, DeepMice demonstrates advanced molecular docking capabilities in the CASF-2016 standard test set. In addition, DeepMice considers the multiscale structure of proteins, optimizing the conformation scoring process and improving docking efficiency. In summary, DeepMice is an efficient and accurate molecular docking model, which is expected to accelerate the process of new drug research and development. The program based on the DeepMice model, which is now freely available at https://www.deepmice.com , provides a powerful tool for drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信